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UCLA Announcement

e Homework 3 out
o Deadline: 11/09 Friday 11:59 pm
o KNN(30%) and Neural Network(70%)
o Environment Requirement: Jupyter + Python 3
e Course Project Midterm Report (about to) out
o Deadline: 11/12 Monday 11:59 pm
o According to the guildline file
e Midterm date out

o 11/14 Wednesday 12:00-1:50 pm(in class)
o Remember to carry: one-page reference paper(letter size), simple calculator



UCLA

KNN



UCLA KNN

e Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

E



http://vision.stanford.edu/teaching/cs231n-demos/knn/

UCLA KNN

e Classify an unknown example with the most common class among K nearest

examples
o “Tell me who your neighbors are, and I'll tell you who you are”
e Example A
— >
o K=3 length
o 2 sea bass, 1 salmon
|

o Classify as sea bass
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UCLA KNN: Multiple Classes

e Easy to implement for multiple classes

e Example forK=5

o 3 fish species: salmon, sea bass, eel

o 3 sea bass, 1 eel, 1 salmon — classify as sea bass
A

length

lightness



UCLA KNN: How to Choose K?

e In theory, if infinite number of samples available, the larger k, the better
classification result you'll get.

e Caveat: all K neighbors have to be close
o Possible when infinite # samples available Tt
o Impossible in practice since # samples if finite "

e Should we “tune” K on training data?
o  Overfitting noise

e K =1 — sensitive to “noise” (e.g. see right)
K=1:)
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UCLA KNN: How to Choose K?
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UCLA KNN: How to Choose K?

e Larger K gives smoother boundaries, better for generalization
o Only if locality is preserved
o Koo large — looking at samples too far away that are not from the same class

e Can choose K through cross-validation

1-HM 5-HMN 20-MN
| 1 Y ]
o ;f..-"'.a: u‘ | l‘%-* b )| A ,,":;;3;;:' o
;r L_‘P. - _..-* g 22343 i}zl,i: .
as " 1 [ £l b 4 ¥ ! l‘l
'{} { “-1 ,* q,:ﬂ . d-.ﬁ; 3 (g3
3"3 - f‘ ) u}‘L * o . hi_t{h‘}

* picture from R. Gutierrez-Osuna
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Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)



UCLA KNN: Multi-Model Distributions
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UCLA Decision Boundaries

e \oronoi diagram is useful for visualization

decision boundary




UCLA Decision Boundaries

e Decision boundaries are formed by
a subset of the Voronoi Diagram of
the training data

e Each line segment is equidistant
between two points of opposite
class

e The more examples that are stored,
the more fragmented and complex
the decision boundaries can be.




UCLA KNN: Selection of Distance

e \We use Euclidean Distance to find the nearest neighbor:

D(a,b) = \/Z(ak ~ b)?

k

e Euclidean distance treats each feature as equally important
e Sometimes, some features (or dimensions) may be much more discriminative
than other features



UCLA KNN Distance Selection: Extreme Example

Feature 1 gives the correct class: 1 or 2

Feature 2 gives irrelevant number from 100 to 200
Dataset: [1, 150], [2, 110]

Classify [1, 100]

o

1
1100

1

p(|

1100]’

"1150]

1

o T

(110

) = /(1 —=1)%2 + (100 — 150)2 = 50

) = VT=27+ (100 - 110)? = 105

Use Euclidean distance can result in wrong classification
Dense Example can help solve this problem



UCLA KNN Distance Selection: Extreme Example

e Decision boundaryisinred, and is
really wrong because:

O

Feature 1 is discriminative, but its scale
is small

Feature gives no class information but
its scale is large, which dominates
distance calculation
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UCLA KNN: Feature Normalization

Normalize features that makes them be in the same scale
Different normalization approaches may reflect the result
e Linear scale the feature in range [0,1]:

min

oo fold = fold
new = rsmax __ gmin
old old

e Linear scale to 0 mean variance 1(Z-score):

£ _ Jold — H
new = T _
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UCLA KNN: Feature Normalization

e Result comparison non-normalized vs normalized
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UCLA KNN: Selection of Distance

e Feature normalization does not help in high dimensional spaces if most
features are irrelevant

D(a,b) = /S (a) — bp)? = JEI-(a;- — b))% +X(a; - b)’

Discriminative Moisy
features features

e |f the number of useful feature is smaller than the number of noisy features,
Euclidean distance is dominated by noise.



UCLA KNN: Example of Noise Domination Problem
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UCLA KNN: Feature Weighting

e Scale each feature by its importance for classification

D(a,b) = ‘,Z wy (ag — by)?
T

e Use prior/domain knowledge to set the weight w
e Use cross-validation to learn the weight w



UCLA KNN: Computational Complexity

e Suppose n examples with dimension d

e For each point to be classified:
o O(d) to compute distance to one example
o O(nd) to compute distances to all examples
o O(nk) time to find k closest examples
o Total time: O(nk + nd)

e \Very expensive for a large number of queries



UCLA KNN: Reduce Complexity

e Reduce the dimensionality of the data:

o Find a projection from high dimensional space to a lower
dimensional space so that the distance between samples
are approximately the same

o Use Principal Component Analysis(PCA)

e Apply smart data structure, e.v. k-d trees



UCLA KNN: Summary

e Advantages:
o Can be applied to the data from any distribution
o The decision boundary is not necessarily to be linear
o Simple and Intuitive
o Good Classification with large number of samples

e Disadvantages:
o Chossing k may be tricky
o Test stage is computationally expensive
m No training stage, time-consuming test stage
m Usually we can afford long training step but fast testing speed
o Need large number of examples for accuracy



UCLA Reference 6 l/

*http://www.csd.uwo.ca/courses/CS9840a/Lectur
e2 knn.pdf

*http://classes.engr.oregonstate.edu/eecs/spring2
012/cs534/notes/knn.pdf

*http://people.csail.mit.edu/dsontag/courses/mi12/
slides/lecture10.pdf



http://www.csd.uwo.ca/courses/CS9840a/Lecture2_knn.pdf
http://www.csd.uwo.ca/courses/CS9840a/Lecture2_knn.pdf
http://classes.engr.oregonstate.edu/eecs/spring2012/cs534/notes/knn.pdf
http://classes.engr.oregonstate.edu/eecs/spring2012/cs534/notes/knn.pdf
http://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture10.pdf
http://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture10.pdf

UCLA

Similarity Metrics



UCLA Similarity Metrics

e Dissimilarity

® [3 5
11 21

e 3 2-dinput, x1,x2,x3
e The dissimilarity matrix is a 3*3 lower-triangular matrix:

0 0 0 0 0 0
d21) 0 0 JB =62+ (5-9)2 0 0
d(3,1) d@EB2) 0 JE-1DZ2+(5-21)2 J(A1-6)2+(21-9)2 0



UCLA Dissimilarity: Nominal Atributes

e Student 1: likes Jazz, eats pizza, roots for the cubs, wears socks
e Student 2: likes Rock, eats pizza, roots for the cubs, goes barefoot
e d(Student 1, Student 2):

o m: #of matches — 2
o p: total # of variables — 4
o d(Student 1, Student 2) = (4-2)/4=0.5



UCLA Binary Attributes

e Symmetric binary attributes:

o Gender

e Asymmetric attributes:

o Preference, Character, etc.

e Can be manually defined



UCLA Binary Attributes

L : : Object /
e Dissimilarity of Binary Attributes: i J ({ sum

o Define0 and 1 1 . 47

o calculate q,s,rt,p Object / 0 Z t Z.H
e Distance measure for symmetric binary P i+ - p

variables:
. r+s
d(i, j) =
e i -

e Distance measure for asymmetric @ Jaccard coefficient (similarity measure
binary variables: for asymmetric binary variables):

. ™"+ s ) e B q
d(z: .?) = gq+7r+s SZmIJa,cca.rd(Z:j) = C[+'r+3




UCLA

Binary Attributes: Example

Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4
Jack (M Y N P N N N
Mary |F Y N P N p N
Jim |M Y P N N N N

e i=Jack, = Mary
Define M,Y,P as 1;

o r=0,s=1,9=2

Define F,N as O
Assume symmetric attributes for all:

e Assume symetric for Gender, asymetric for other attributes
o ForGender:r=1,s=0,9=0,t=0
o Forothers:r=0,s=1,q=2

Object /

. . 1
Object / 0

sum

sum
qg+rT
s+t



UCLA Ordinal Attributes

e Order is important
o Transfer rank into value

o Freshman, Sophomore, Junior, Senior
o 1,234



UCLA Mixed Attributes

0
0

All Together || | YR

1 0 . -
05 05 0
]

/ 01 1 »y L0 10 05 0
Object test-| test-2 test-3
Identifier (nominal) (ordinal) (numeric 0
1 code A excellent 45 055 0
22

2 code B fair 045 1.00 0

3 code C good 64 0.40 0.4 086 0
4 code A excellent 28

. d(3,1)?

. 1(1)+1(0.5)+1(0.45)
3




UCLA Cosine Similarity )

SUELN
S 2

e For vector data
e d1:Ilike to go to the store
e d2:1like the cubs, go cubs go

cos(d,, d,) = (d; e d)) /I |d,[] |1d,l],

d2 1 1 0 2 1 0 2

* cos(d1, d2)?
1-141:142:0+1:2+1:1+1:0+0-2
V124+12422+124+124+124+02-V12+12+0%2 422 +12 402+ 22




ROC

# C Score
1 P 09
2 P 0.8
3 M 0.7
4 P 0,6
5 P 0,55
B P 054
7 M 053
3 M 052
g P 051
10 M 0,505
11 P 0.4
12 M 0,39
13 P 0,38
14 M 0,37
15 M 0,36
16 M 0,35
17 P 034
15 M 033
19 P 0.3
20 M 0,1

http://mlwiki.org/index.php/ROC_Analysis
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http://mlwiki.org/index.php/ROC_Analysis

UCLA K-Means e

e Demo 1: http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
e Demo 2: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/



http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

UCLA About Homework 3

e Due Date: Next Friday

e Be prepared (Refer to the doc for hw3)

o Install Jupyter with Python 3.x(3.6 is preferred)
o Download the cifar-10 dataset via get_datasets.sh
m For windows user, there might be problems downloading the dataset

e Live demonstration for installation
e Hints on k-fold cross-validation and matrix-level operations involved in NN



UCLA Course Project Midterm Report '

o https://docs.google.com/document/d/1xLeBU-
N8nNuMT6zhLyLL1NIGuu25SJU10WI9eybdgjXa/e
dit?usp=sharing



https://docs.google.com/document/d/1xLeBU-n8nuMT6zhLyLL1NIGuu25SJU1OWl9eybdgjXg/edit?usp=sharing
https://docs.google.com/document/d/1xLeBU-n8nuMT6zhLyLL1NIGuu25SJU1OWl9eybdgjXg/edit?usp=sharing
https://docs.google.com/document/d/1xLeBU-n8nuMT6zhLyLL1NIGuu25SJU1OWl9eybdgjXg/edit?usp=sharing
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