

CS145 Discussion: Week 1 Course logistics, Math Prep, Linear Regression and Programming Prep

Junheng Hao Friday, 10/02/2020

Roadmap

- Course Logistics
- Math Prep: Calculus, linear algebra, probability and optimization
 - In separate slides
- Review: Linear regression
- Programming Prep: Python and Jupyter Notebook
- Q & A

Course Information

- Course homepage:
 - https://sites.google.com/view/cs145fall2020/home
 - Please find all the relevant course information there, e.g. schedule, slides, and etc.
- CCLE:
 - Homework, recordings lectures and discussion sessions
- Piazza (for QA):
 - Link: piazza.com/ucla/fall2020/cs145
 - Please ask your question on Piazza before email the professor or any TAs, so others will also benefit from your question.
- Important dates (Mark in your calendar now!)
 - Midterm: Nov 16th, In class
 - Final exam: Dec 16th, 8-10am PT

Course logistics

- Office hours & Zoom links
 - Yizhou Sun (<u>yzsun@cs.ucla.edu</u>) Mondays 3:30-5:30pm @Zoom https://ucla.zoom.us/j/93620232458
 - Junheng Hao (<u>haojh.ucla@gmail.com</u>) Thursdays 8:30-10:30 AM @Zoom <u>https://ucla.zoom.us/j/8391795219</u>
 - Zijie Huang (zijiehuang@cs.ucla.edu) Mondays 1:00pm-3:00pm @Zoom https://ucla.zoom.us/j/9506978812
 - Yue (Ariel) Wu (<u>arielwu@cs.ucla.edu</u>) Tuesdays 8:30-10:30 am @Zoom https://ucla.zoom.us/j/3698552706
 - Shichang Zhang (<u>shichang@cs.ucla.edu</u>) Wednesdays 1:30-3:30pm @Zoom https://ucla.zoom.us/j/93549332503
- Discussion 1C by Junheng Hao:
 - Link: <u>https://www.haojunheng.com/teaching/cs145-fall20/</u>

• Homework: 30%

- 6 assignments (5 highest counted)
- Submitted by GradeScope (tentative)
- Late submission penalty:
- Exam: $35\% \rightarrow$ Midterm exam: 20%, Final exam: 15%
 - Open book, no internet access and no communication with others

• Course project: 25%

- Group project (4 or 5 students per group)
- Topics: COVID-19 Prediction
- Project details announced next Monday (Oct 12)

• Participation: 10%

- In-class participation
- Quizzes (valid for 24 hours after release)
- Piazza

- As required by UCLA chancellor office, CS145 is entirely online this quarter.
- All teaching activities (lectures, discussion sessions, office hours) will be held virtually through Zoom.
- Please **DO NOT** share the zoom links outside or record the lectures!
- Please **DO NOT** enter the meeting room outside the regular teaching time!

Other Questions?

- PTE
- Group formation
- Grading option
- CS145 by Yizhou or CS146 by Kai-Wei?

- Oct. 12 (Monday, Week 2): Homework #1 released.
- Oct. 12 (Monday, Week 2): Project introduction and guidelines release.
- Oct. 16 (Friday, Week 2): Group information submission.

Other homework/project/exam deadlines will be announced in class, course website, Piazza, CCLE and my discussion webpage.

About TA (Myself)

- Fourth-year Ph.D. candidate
- UCLA Advisors: Yizhou Sun, Wei Wang (UCLA ScAi Institute, UCLA Data Mining Group)
- Past work experiences: @NEC Labs, @Amazon, @IBM Research AI
- Research interests: Knowledge Graphs, Graph mining, NLP, Bioinformatics, etc.
- Hobbies: Languages (beginner for Spanish and German), tennis, …
- More about myself: <u>https://www.haojunheng.com/</u>

- Foundational to knowledge-driven AI systems
- Enable many downstream applications (NLP tasks, Recommender, Bioinformatics, etc)

Computational Biology

Math Review

- What kind of math is needed for CS145?
 - Just a bit (or a lot) from calculus, linear algebra, probability and optimization...
- Detailed math overview in the slides named "Week 1 Math".

• Checklist:

- Properties of probability
- Probability spaces (discrete/continuous)
- Probability distributions (discrete/continuous)
- Random variables
- Multivariate probability distributions
- Marginal probability and conditional probability
- Expectation, variance, covariance
- Rules of probability
- Independence and Bayes rule

• Checklist:

- Vector, matrix
- Multiplication
- Useful (special) matrices
- o Rank
- \circ Inverse
- Eigenvalues and eigenvectors

- Checklist:
 - Convex set and convex functions
 - Gradients
 - Gradient descent
- Note: We will learn and implement about gradient descent in this course!

Math Review: Linear Algebra

- Checklist:
 - Basic calculus $y = x^2, \frac{\delta y}{\delta x} = ?$
 - Gradient calculation in matrix format

From the class schedule website:

- Review of probability from a course by David Blei from Princeton U.
 - Link: <u>https://www.cs.princeton.edu/courses/archive/spring07/cos424/scribe_notes/0208.pdf</u>
- Machine Learning Math Essentials by Jeff Howbert from Washington U.
 - Link: http://courses.washington.edu/css490/2012.Winter/lecture_slides/02_math_essentials.pdf
- Probability by Arian Maleki and Tom Do from Stanford
 - Link: <u>http://cs229.stanford.edu/section/cs229-prob.pdf</u>
- Optimization
 - Link: <u>http://web.cs.ucla.edu/~yzsun/classes/2019Winter_CS145/Slides/optimization.pdf</u>

Formalization

- Data: n independent data points {x_i, y_i}ⁿ_{i=1}
 y_i, dependent variable
 x_i = (x_{i1}, x_{i2}, ..., x_{ip})^T, explanatory variables
 Model:
 For any data point (x, y)
 β = (β₁, ..., β_p)^T: weight vector
 y = x^Tβ + β₀ = β₀ + x₁β₁ + x₂β₂ + ··· + x_pβ_p
 - For convenience, include bias term β_0 into β

•
$$\boldsymbol{x} = (1, x_1, x_2, \dots, x_p)^T$$

• $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^T$
• $\boldsymbol{y} = \boldsymbol{x}^T \boldsymbol{\beta}$

A 3-step Process

- Model Construction
 - Use training data to find the best parameter β , denoted as $\hat{\beta}$
- Model Selection
 - Use validation data to select the best model
 - E.g., Feature selection
- Model Usage
 - Apply the model to the unseen data (test data): $\hat{y}_{new} = \mathbf{x}_{new}^T \widehat{\boldsymbol{\beta}}$

Least Square Estimation

- Cost function (Mean Square Error):
 - • $J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} y_{i})^{2} / n$
- Matrix form:
 - $J(\boldsymbol{\beta}) = (\mathbf{X}\boldsymbol{\beta} \boldsymbol{y})^T (\mathbf{X}\boldsymbol{\beta} \boldsymbol{y})/2n$ $or ||\mathbf{X}\boldsymbol{\beta} - \boldsymbol{y}||^2/2n$ $\begin{bmatrix} 1, x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1, x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1, x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$

 $X: n \times (p+1)$ matrix $y: n \times 1$ vector

Ordinary Least Squares (OLS)

• Goal: find $\widehat{\beta}$ that minimizes $J(\beta)$ • $J(\boldsymbol{\beta}) = \frac{1}{2n} (X\boldsymbol{\beta} - y)^T (X\boldsymbol{\beta} - y)$ $= \frac{1}{2n} (\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y})$ Ordinary least squares $\frac{\partial z}{\partial x}$ • Set first derivative of $J(\boldsymbol{\beta})$ as 0 Z • $\frac{\partial J}{\partial \boldsymbol{\beta}} = (X^T X \boldsymbol{\beta} - X^T y)/n = 0$ \mathbf{A}^T Ax $\mathbf{x}^T \mathbf{A}$ A • $\Rightarrow \widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$ $\mathbf{x}^T \mathbf{x}$ $2\mathbf{x}$ $\mathbf{x}^T \mathbf{A} \mathbf{x}$ $Ax + A^T x$

More about matrix calculus:

Engineer Change.

https://atmos.washington.edu/~dennis/MatrixCalculus.pdf

Batch Gradient Descent

• Move in the direction of steepest descend

Repeat until converge { $\boldsymbol{\beta}^{(t+1)} := \boldsymbol{\beta}^{(t)} - \eta \frac{\partial J}{\partial \boldsymbol{\beta}} |_{\boldsymbol{\beta} = \boldsymbol{\beta}^{(t)}}, \quad e.g., \eta = 0.01$ } Where $J(\boldsymbol{\beta}) = \frac{1}{2} \sum_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i})^{2} / n = \sum_{i} J_{i}(\boldsymbol{\beta}) / n \text{ and}$ $\frac{\partial J}{\partial \boldsymbol{\beta}} = \sum_{i} \frac{\partial J_{i}}{\partial \boldsymbol{\beta}} / n = \sum_{i} \boldsymbol{x}_{i} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i}) / n$

Review: Linear Regression

- Closed form solution $\Rightarrow \widehat{\beta} = (X^T X)^{-1} X^T y$
- Three types of gradient descent

- Batch gradient descent (batch size = n)
- Mini-batch gradient Descent (1 < batch size < n)</p>
- Stochastic gradient descent (batch size = 1)

Figure credit: <u>https://datascience.stackexchange.com/questions/52884/possible-for-batch-size-of-neural-network-to-be-too-small</u>

Quick questions:

- 1. Why do we design various types of gradient descent for linear regression, instead of using closed-form solution?
- 2. Does gradient descent guarantee convergence in linear regression?
- 3. What if the learning rate η is too large or too small?

- **Step 1:** Install Anaconda (with Python 3.X and Jupyter Notebooks)
- **Step 2:** Try out Python in command line and open Jupyter Notebooks
- **Step 3:** Familiarize yourself with Python 3
- **Step 4:** Use Jupyter Notebooks for coding and writing together
- **Step 5:** Customize your Python environment and install Python packages
 - Example packages: Numpy, Pandas, Matplotlib

- Install Conda/Anaconda
 - Conda: <u>https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html</u>
 - Anaconda: <u>https://docs.anaconda.com/anaconda/install/mac-os/</u>
- Install Jupyter Notebook from anaconda (this step may be skipped once Anaconda is installed)
 - Link: <u>https://jupyter.org/install</u>
 - Command Line: conda install -c conda-forge notebook
- Check out Python and Jupyter notebook
 - Command Line: python or ipython
 - Version/Source: python --version or which python
 - Open Jupyter Notebook: jupyter notebook (automatically into something URL like: <u>http://localhost:8888/tree</u>)
- Demo in class

Alert: For student using Windows, we may not be able to identify and easily solve the python setting problem.

- Checklist:
 - Open Jupyter Notebook in your web browser (Chrome)
 - Identify Markdown cell and Code cell
 - Learn how to use markdown and latex to input math formula
 - Run Python code
- Markdown tutorial \rightarrow *It is a notebook interface!*
 - Checklist: paragraph, bold, italic, list, code (courier), math formula (in latex)
 - Link: <u>https://www.markdowntutorial.com/</u>
- Latex \rightarrow It is for typing math symbols and equations!
 - No need to install Tex or Mactex
 - Cheatsheet: <u>http://tug.ctan.org/info/undergradmath/undergradmath.pdf</u>
- Demo in class

- Checklist:
 - Create a customized virtual environment
 - Activate/Deactivate your environment
 - Install packages for your virtual environment
- Helpful links:
 - Managing conda environment:

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environment

<u>s.html</u>

Demo in class

Thank you!

Q & A