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UCLA Roadmap

Engineer Change.

e Math review
o  Probability
o Linear algebra
o Optimization

o Matrix calculus



UCLA Math Review

Engineer Change.

e Slides reference
o Jeff Howbert,
https://courses.washington.edu/css490/2012.Winter/lecture _slides/02 math essen
tials.pdf
Xinkun Nie, http://cs229.stanford.edu/notes2020fall/notes2020fall/TA-slides1.pdf
o Hristo Paskov, http://snap.stanford.edu/class/cs246-2014/slides/LinAlgSession.pdf



https://courses.washington.edu/css490/2012.Winter/lecture_slides/02_math_essentials.pdf
https://courses.washington.edu/css490/2012.Winter/lecture_slides/02_math_essentials.pdf
http://cs229.stanford.edu/notes2020fall/notes2020fall/TA-slides1.pdf
http://snap.stanford.edu/class/cs246-2014/slides/LinAlgSession.pdf

UCLA Probability

Engineer Change.

Probability spaces

A probability space is a random process or experiment with
three components:

— ), the set of possible outcomes O
¢ number of possible outcomes =| Q| =N

— F, the set of possible events E
¢ an event comprises 0 to N outcomes
+ number of possible events = | F | = 2N

— P, the probability distribution
+ function mapping each outcome and event to real number
between 0 and 1 (the probability of O or E)

+ probability of an event is sum of probabilities of possible
outcomes in event
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UCLA Probability

Engineer Change.

Axioms of probability

1. Non-negativity:
foranyeventEe F,p(E)>0

2. All possible outcomes:
p(Q)=1

3. Additivity of disjoint events:
for all events E, E’ €« Fwhere EN E’ = &,
pP(EUE")=p(E)+p(E’)
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UCLA Probability

Engineer Change.

Types of probability spaces

Define | Q | = number of possible outcomes

e Discrete space | Q| is finite
— Analysis involves summations ( X.)

e Continuous space | Q| is infinite
— Analysis involves integrals (| )
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UCLA Probability

Engineer Change.

Example of discrete probability space

Single roll of a six-sided die
— 6 possible outcomes: 0=1, 2, 3,4, 5,0r6
— 28 =164 possible events
¢ example: E= (0 €{1,3,5}), i.e. outcome is odd

— If die is fair, then probabilities of outcomes are equal
p(1)=p(2)=p(3)=
p(4)=p(5)=p(6)=1/6

¢ example: probability of event E = ( outcome is odd ) is
p(1)+p(3)+p(5)=1/2
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UCLA Probability

Engineer Change.

Example of discrete probability space

Three consecutive flips of a coin

— 8 possible outcomes: O = HHH, HHT, HTH, HTT,
THH, THT, TTH, TTT

— 28 =256 possible events
¢ example: E=( O € { HHT, HTH, THH } ), i.e. exactly two flips
are heads
¢ example: E= (0 € {THT, TTT } ), i.e. the first and third flips
are tails

— If coin is fair, then probabilities of outcomes are equal
p(HHH ) =p(HHT ) =p(HTH ) = p(HTT ) =
p(THH)=p(THT)=p(TTH)=p(TTT)=1/8
¢ example: probability of event E = ( exactly two heads ) is

p(HHT )+ p(HTH )+ p(THH)=3/8
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UCLA Probability

Engineer Change.

Example of continuous probability space

Height of a randomly chosen American male

— Infinite number of possible outcomes: O has some
single value in range 2 feet to 8 feet

— Infinite number of possible events

¢ example: E=( O | O<5.5feet), i.e. individual chosen is less
than 5.5 feet tall

— Probabilities of outcomes are not equal, and are
described by a continuous function, p( O)

/ \
/ \

. 4 4 i . .
410 500 87 §'4 56 68 S0 60 62 64 66
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UCLA Probability

Engineer Change.

Example of continuous probability space

Height of a randomly chosen American male

— Probabilities of outcomes O are not equal, and are
described by a continuous function, p( O)
— p( O) is a relative, not an absolute probability
¢ p( O) for any particular O is zero
¢ [p(O) from O = - to « (i.e. area under curve) is 1
¢ example: p(0O=58")>p( 0=62")
+ example: p(0<56")=([p(0)fromO=-oto 56" )=0.25

AR
// B

b

" . :
410 §°0° §' 54" §'6" 5% S5'0° 60" 62 '« 6'F
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UCLA Probability

Engineer Change.

Probability distributions

e Discrete: probability mass function (pmf)
example: oy
sum of two £ .
fair dice g
e Continuous: probability density function (pdf)
example:

L

A\
waiting time between NJ
eruptions of Old Faithful \

(minutes) &

1

probability
00 001 002 00

|
\
{
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UCLA Probability

Engineer Change.

Random variables

e A random variable X is a function that associates a number x with
each outcome O of a process
— Common notation: X( O ) = x, or just X = x

e Basically a way to redefine (usually simplify) a probability space to a
new probability space

— X must obey axioms of probability (over the possible values of x)
— X can be discrete or continuous

e Example: X = number of heads in three flips of a coin
— Possible values of Xare 0, 1, 2, 3
- p(X=0)=p(X=3)=1/8 p(X=1)=p(X=2)=3/8
— Size of space (number of “outcomes”) reduced from 8 to 4

e Example: X = average height of five randomly chosen American men

— Size of space unchanged (X can range from 2 feet to 8 feet), but
pdf of X different than for single man
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UCLA Probability

Engineer Change.

Multivariate probability distributions

e Scenario
— Several random processes occur (doesn’t matter
whether in parallel or in sequence)
— Want to know probabilities for each possible
combination of outcomes
e Can describe as joint probability of several random
variables
— Example: two processes whose outcomes are
represented by random variables X and Y. Probability
that process X has outcome x and process Y has
outcome y is denoted as:

p(X=x,Y=y)

Jeff Howbert Introduction to Machine Learning Winter 2012 18




UCLA

Engineer Change.

Probability

Example of multivariate distribution

joint probability: p( X = minivan, Y = European ) = 0.1481

sport
SuvV

European minivan

Y = manufacturer X = model type

sedan
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UCLA Probability

Engineer Change.

Multivariate probability distributions

e Marginal probability

— Probability distribution of a single variable in a
joint distribution

— Example: two random variables X and Y-
P(X=X)=Zp-aivaues ot y P(X =X, Y =D )
e Conditional probability

— Probability distribution of one variable given
that another variable takes a certain value

— Example: two random variables X and Y-
p(X=x|Y=y)=p(X=x,Y=y)Ip(Y=y)

Jeff Howbert Introduction to Machine Learning Winter 2012 20 I




UCLA Probability

Example of marginal probability

marginal probability: p( X = minivan ) = 0.0741 + 0.1111 + 0.1481 = 0.3333

American .
sport
Asian SuvV
ini
Y = manufacturer European minivan

sedan X = model type
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UCLA Probability

Example of conditional probability

conditional probability: p( Y = European | X = minivan ) =

0.1

probability

~ sport
Asian . SuV

European minivan

Y = manufacturer s X = model type
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UCLA Probability

Engineer Change.

Continuous multivariate distribution

e Same concepts of joint, marginal, and conditional
probabilities apply (except use integrals)

e Example: three-component Gaussian mixture in two
dimensions

probability
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UCLA Probability

Engineer Change.

Expected value

Given:

e A discrete random variable X, with possible
values x = x,, X,, ... X,

e Probabilities p( X = x; ) that X takes on the
various values of x;

e A function y; = f( x; ) defined on X

The expected value of fis the probability-weighted
“average” value of f( x; ):

E(f)=2;p(x;)-f x;)
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UCLA

Engineer Change.

Probability

Example of expected value
e Process: game where one card is drawn from the deck
— |If face card, dealer pays you $10
— If not a face card, you pay dealer $4
e Random variable X = { face card, not face card }
— p(face card ) = 3/13
— p( not face card ) = 10/13
e Function f{ X') is payout to you
— f(face card ) =10
— f( not face card ) = -4
e Expected value of payout is:
E(f)=2;p(x;) -fx;)=3/13-10 + 10/13 - -4 =-0.77
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UCLA

Engineer Change.

Probability

Expected value in continuous spaces

— —
E(f)— x=a—)bp(x)'f(x)
02
015+ .
01r 4
005+
0- J
005+ .
01F .
—_— p‘ x )
015} 4 .
e pix) f{x)
02+ - UNWeighted average value 1
of f{x)
026+ e v w PrObAbIlity.weighted average | <
(expectod) value of f( x )
L L L L A 1
2 £ 4 2 0 2 4 6 8 10
X
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UCLA Probability

Engineer Change.

Common forms of expected value (1)

e Mean (u)
f(x)=x = u=E(f)=2,p(%)- X
— Average value of X = x;, taking into account probability
of the various x;

— Most common measure of “center” of a distribution

e Compare to formula for mean of an actual sample

1 n
ﬂ_ﬁg‘xi
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UCLA Probability

Engineer Change.

Common forms of expected value (2)

e Variance (¢?)
f(x)=(x-pu) =  P=Lp(x) (X-pu)
— Average value of squared deviation of X = x; from
mean g, taking into account probability of the various x;

— Most common measure of “spread” of a distribution
— ois the standard deviation

e Compare to formula for variance of an actual sample

1 n
o.2=— X, — 2
N—1§(’ )
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UCLA Probability

Engineer Change.

Common forms of expected value (3)

e Covariance
f(x)=(x-m) 9yi)=(yi-n,) =
cov(x,y)=2p( X, ¥) - (X- ) (Vi- 1)
— Measures tendency for x and y to deviate from their means in
same (or opposite) directions at same time

no covariance

aoJuelIeA0d
(eAnisod) ybiy

e Compare to formula for covariance of actual samples

cov(x,y) = Nl_ i (x; =)y, —u,)
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UCLA Probability

Engineer Change.

Correlation

e Pearson’s correlation coefficient is covariance normalized

by the standard deviations of the two variables
xo-y

— Always lies in range -1 to 1

— Only reflects linear dependence between variables

: Linear dependence
Y A B R S SN with noise
1 1 1 5 | D1 a .
B L e S & . Linear dependence
without noise

° 0
Q & = Various nonlinear
%%

dependencies
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UCLA Probability

Engineer Change.

Complement rule

Given: event A, which can occur or not

p(notA)=1-p(A)

:rrnot A

L

Jeff Howbert Introduction to Machine Learning Winter 2012 31
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UCLA

Engineer Change.

Probability

Product rule

Given: events A and B, which can co-occur (or not)

pP(A, B)=p(A|B)-p(B)

(same expression given previously to define conditional probability)

(not A, not B)

areas represent relative probabilities

| Jeff Howbert Introduction to Machine Learning Winter 2012 22 |




UCLA Probability

Engineer Change.

Example of product rule

¢ Probability that a man has white hair (event A)
and is over 65 (event B)

~ p(B)=0.18
~p(A|B)=0.78

- p(AB)=p(A|B)-p(B)=
0.78-0.18 =
0.14
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UCLA Probability

Engineer Change.

Rule of total probability

Given: events A and B, which can co-occur (or not)

p(A)=p(A B)+p(A, notB)

(same expression given previously to define marginal probability)

(not A, not B)

(A, not B)

areas represent relative probabilities
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UCLA

Engineer Change.

Probability

Independence

Given: events A and B, which can co-occur (or not)

p(A|B)=p(A) or p(A B)=p(A)-p(B)

02

(not A, not B)

(A, not B)

areas represent relative probabilities
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UCLA Probability

Engineer Change.

Examples of independence / dependence
e Independence:
— Outcomes on multiple rolls of a die
— QOutcomes on multiple flips of a coin
— Height of two unrelated individuals

— Probability of getting a king on successive draws from
a deck, if card from each draw is replaced

e Dependence:
— Height of two related individuals
— Duration of successive eruptions of Old Faithful

— Probability of getting a king on successive draws from
a deck, if card from each draw is not replaced
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UCLA Probability

Engineer Change.

Example of independence vs. dependence

¢ Independence: All manufacturers have identical product
mix. p( X=x|Y=y)=p(X=x).

e Dependence: American manufacturers love SUVs,
Europeans manufacturers don’t.

probability

European

sport
Suv
minivan
Y = manufacturer R X = model type
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UCLA Probability

Engineer Change.

Bayes rule

A way to find conditional probabilities for one variable when
conditional probabilities for another variable are known.

p(B|A)=p(A|B)-p(B)/p(A)
where p(A)=p(A, B)+p(A, notB)

(not A, not B)\

02

(A, not B)

_4
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UCLA Probability

Engineer Change.

Bayes rule

posterior probability oc likelihood x prior probabili
P(BIA)=(2(AIB))-(p(B))/ p(A)

(not A, not B)

B

02

4
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UCLA Probability

Engineer Change.

Example of Bayes rule

e Marie is getting married tomorrow at an outdoor ceremony in the
desert. In recent years, it has rained only 5 days each year.
Unfortunately, the weatherman is forecasting rain for tomorrow. When
it actually rains, the weatherman has forecast rain 90% of the time.
When it doesn't rain, he has forecast rain 10% of the time. What is the
probability it will rain on the day of Marie's wedding?

e Event A: The weatherman has forecast rain.

e Event B: It rains.

e We know:

— p(B)=5/365=0.0137 [Itrains 5 days out of the year. ]

— p(notB)=360/365=0.9863

— p(A|B)=0.9 [When itrains, the weatherman has forecast
rain 90% of the time. ]

- p(A|not B)=0.1 [When it does not rain, the weatherman has
forecast rain 10% of the time.]
Jeff Howbert Introduction to Machine Learning Winter 2012 40 I




UCLA Probability

Engineer Change.

Example of Bayes rule, cont’d.

e We want to know p( B | A ), the probability it will rain on
the day of Marie's wedding, given a forecast for rain by
the weatherman. The answer can be determined from
Bayes rule:

1. p(B|A)=p(A|B)-p(B)/p(A)

2 p(A)=p(A|B)-p(B)+p(AlnotB) -p(notB)=
(0.9)(0.014) + (0.1)(0.986) = 0.111

5 p(B|A)=(0.9)0.0137)/0.111 = 0.111

e The result seems unintuitive but is correct. Even when the
weatherman predicts rain, it only rains only about 11% of
the time. Despite the weatherman's gloomy prediction, it
is unlikely Marie will get rained on at her wedding.

I Jeff Howbert Introduction to Machine Learning Winter 2012 41 I




UCLA Probability

Engineer Change.

Probabilities: when to add, when to multiply

e ADD: When you want to allow for occurrence of
any of several possible outcomes of a single
process. Comparable to logical OR.

e MULTIPLY: When you want to allow for
simultaneous occurrence of particular outcomes
from more than one process. Comparable to
logical AND.

— But only if the processes are independent.
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UCLA Probability

Engineer Change.

Sample variance vs Variance (Why N-17?)

Proof & Explanation:https://en.wikipedia.org/wiki/Bessel%27s_correction



https://en.wikipedia.org/wiki/Bessel%27s_correction

UCLA

Engineer Change.

Linear algebra

Vectors and Matrices

 Vector x € R4

* May also write
x=[X1 Xz .. Xxq]T




UCLA

Engineer Change.

Linear algebra

Vectors and Matrices

e Matrix M € R™*"

My; -+ My,
M — [ S ]
M1 -+ Mpn
* Written in terms of rows or columns
i
M = Pl = [Cl Cn]
Tm




UCLA

Engineer Change.

Linear algebra

Multiplication

* Vector-vector: x,y € R - R

d
x"y = Z XiYi
i=1

e Matrix-vector: x € R", M € R™*" - R™
rl rix
Mx=1|:|x=| :
rl rlx




UCLA

Engineer Change.

Linear algebra

Multiplication

* Vector-vector: x,y € R - R

d
x"y = in}'i
i=1

e Matrix-vector: x € R", M € R™*" - R™
rl rix
Mx=|:|x=| :
rl rlx




UCLA Linear algebra

Engineer Change.

Multiplication

e Matrix-matrix: A € R™** B € R — RmM*n

3 4 4
A |

[ 1 T




UCLA Linear algebra

Engineer Change.

Multiplication

e Matrix-matrix: A € R™*¥ B € R - RM*xn
—a; rows of 4, bj cols of B

alB

AB =[Ab, .. Ab,]=| :
al,B

alb, - alb,

a{bj

a’b, - alb,



UCLA

Engineer Change.

Linear algebra

Multiplication Properties

* Associative
(AB)C = A(BC)
* Distributive
A(B+C)=AB + BC

* NOT commutative
AB # BA

— Dimensions may not even be conformable




UCLA Linear algebra

Engineer Change.

Useful Matrices

* Identity matrix I € R™*™

—Al=AIA=A
100 0i #j
0 0 1

* Diagonal matrix A € R™*™

a; - 0
A = diag(ay, ...,a,;,) = [ Pooap ]
0 e Ay



UCLA Linear algebra

Engineer Change.

Useful Matrices

e SymmetricA € R™M*™M: 4 = AT
* Orthogonal U € R™M*™:

UTu =U0UT =1

— Columns/ rows are orthonormal

* Positive semidefinite A € R™*™;
xTAx >0 forallx € R™

— Equivalently, there exists L € R™*™
A=LLT



UCLA Linear algebra

Engineer Change.

Norms

* Quantify “size” of a vector

* Given x € R", a norm satisfies
1 lex|l = [elllx]l
2. |lxIl=0ex=0
3. lx+yll < llx]l + Iyl

* Common norms:

1. Euclidean Ly-norm: [|x|l, = /x? + - + x2
2. Ly-norm: [[x|ly = [xq| + - + [xy]
3. Lg-norm: ||x||, = max|x;|

L



UCLA

Engineer Change.

Linear algebra

Linear Subspaces

* Subspace V c R" satisfies
1. 0€V
2. Ifx,y€Vandc€ R, thenc(x+y)€EV

* \Vectors X4, ..., Xy, spanV if

m
V= {z a;x;

i=1

aEIR{m}




UCLA Linear algebra

Engineer Change.

Linear Subspaces




UCLA Linear algebra

Engineer Change.

Linear Independence and Dimension

* Vectors x4, ..., X,, are linearly independent if
Zﬁlaixi =0=a=0
— Every linear combination of the x; is unique
* Dim(V) =mifxq,.., Xy, spanV and are
linearly independent

—If y4, ... Y span V then
ck=>2m
* If k > m then y; are NOT linearly independent



UCLA Linear algebra

Engineer Change.

Matrix Subspaces

e Matrix M € R™*" defines two subspaces
— Column space col(M) = {Ma|a € R"} c R™
— Row space row(M) = {MTB|B € R™} c R"
* Nullspace of M: null(M) = {x € R"|Mx = 0}
—null(M) 1 row(M)
- dim(null(M )) + dim(row(M )) =n
— Analog for column space



UCLA Linear algebra

Engineer Change.

Matrix Rank

* rank(M) gives dimensionality of row and
column spaces

e If M € R™*™ has rank k, can decompose into
product of m X k and k X n matrices

. &

rank = k




UCLA Linear algebra

Engineer Change.

Properties of Rank

* For A,B € R™*"
1. rank(4) < min(m,n)
2. rank(4) = rank(47)
3. rank(4B) < min(rank(A), rank(B))
4. rank(4 + B) < rank(4) + rank(B)
* A has full rank if rank(4) = min(m, n)
* If m > rank(4) rows not linearly independent
— Same for columns if n > rank(4)



UCLA

Engineer Change.

Linear algebra

Matrix Inverse

e M € R™™ js invertible iff rank(M) = m

* Inverse is unique and satisfies
1. MMM =MM"1=]
2. MH1=M
3. MDY 1=mM"1)T
4. |f Aisinvertible then MA is invertible and
(MA)™1 = A"1M™1




UCLA Linear algebra

Engineer Change.

Systems of Equations

« Given M € R™*",y € R™ wish to solve
Mx=y
— Exists only if y € col(M)
* Possibly infinite number of solutions
* If M is invertible then x = M~ 1y
— Notational device, do not actually invert matrices

— Computationally, use solving routines like
Gaussian elimination



UCLA Linear algebra

Engineer Change.

Systems of Equations

* Whatif y & col(M)?
* Find x that gives § = Mx closest to y
— § is projection of y onto col(M)
— Also known as regression
e Assumerank(M) =n<m
x=MTM)"1M"y 9= ‘M(MTM)—1M,T},
Y

Invertible Projection
matrix




UCLA Linear algebra

Engineer Change.

Characterizations of Eigenvalues

* Traditional formulation
Mx = Ax
— Leads to characteristic polynomial

dettM —AI) =0



UCLA Linear algebra

Eigenvalue Properties

* For M € R™*™ with eigenvalues A;
2. det(M) = 44, .. A,
3. rank(M) =#A; #0



UCLA Optimization

Engineer Change.

Convex Sets

* Aset Cisconvexif Vx,y € C and Va € [0,1]
ax+(1—-—a)yecC

— Line segment between points in C also liesin C
* Ex
— Intersection of halfspaces
— L, balls

— Intersection of convex sets ‘ @



UCLA

Engineer Change.

Optimization

Convex Functions
* Areal-valued function f is convex if domf is
convex and Vx,y € domf and VYa € [0,1]
flax+ (1 —a)y) <af(x) + (1 - a)f(¥)

— Graph of f upper bounded by line segment
between points on graph

(x f(0) & /
. f®))




UCLA

Engineer Change.

Optimization

Gradients

« Differentiable convex f with domf = R?
* Gradient Vf at x gives linear approximation

T
A

5x, " Sxg

f f)+wTvf
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Engineer Change.

Optimization

Gradients

« Differentiable convex f with domf = R?
* Gradient Vf at x gives linear approximation

T
A

5x, " Sxg

f fG) +w'vf




UCLA Optimization

Engineer Change.

Gradient Descent

* To minimize f move down gradient
— But not too far!
— Optimum when Vf =0
* Given f, learning rate a, starting point x,
X = Xq
Dountil Vf =0
x=x—aVf



UCLA

Engineer Change.

Optimization

Stochastic Gradient Descent

* Many learning problems have extra structure
n
£6)=) L(6;x)
i=1

* Computing gradient requires iterating over all
points, can be too costly

* Instead, compute gradient at single training
example




UCLA Optimization

Engineer Change.

Stochastic Gradient Descent

* Given f(0) = X1-,L(0; x;), learning rate «,
starting point 6,
6 =86,
Do until (@) nearly optimal
Fori = 1toninrandom order
6 =6 —aVL(0;x;)

* Finds nearly optimal 6



UCLA Optimization

Engineer Change.

Minimize Y.7-, (y; — 67x;)?




UCLA Optimization

Engineer Change.

Learning Parameter

10 : .

0 50 100 150 200 250
Iteration



UCLA Matrix Calculus

Engineer Change.

The Gradient

Suppose that f : R™*" — R is a function that takes as input a matrix A of size m x n and

returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of partial
derivatives, defined as:

- af(A) af(A) o Of(A) T
S oD oy
VAf(A) c RM*n — 0A21 0A22 0A2,
oF(A) OF(A)  OF(A)
. 0Am O0Am2 OAmn A
i.e., an m X n matrix with 5F(A)
f(A
(Vaf(A))ij =

0A;



UCLA Matrix Calculus

Engineer Change.

The Gradient

Note that the size of V4f(A) is always the same as the size of A. So if, in particular, A is just a

vector x € R",
[ Of(x) T

ox1
of (x)

Vif(x)=|

Bf.(x)

L Oxp, 4

It follows directly from the equivalent properties of partial derivatives that:
- Vx(f(x) + g(x)) = Vxf(x) + Vxg(x).
- For t e R, V,(t f(x)) = tVxf(x).



UCLA Matrix Calculus

Engineer Change.

The Hessian

Suppose that f : R” — R is a function that takes a vector in R” and returns a real number.
Then the Hessian matrix with respect to x, written V2f(x) or simply as H is the n x n matrix
of partial derivatives,

- 0%f(x)  9%f(x) F(x)

Ox? Ox10x2  Ox10xn

P?f(x) O*f(x) . &f(x)

V2 f(X) c R — Ox20x1 Ox3 Ox20xn

o =

0%f(x)  0%f(x) 02%f(x)

L Oxp0x1  OxpOx2  Ox2
In other words, V2f(x) € R™", with
0%f(x)

2 =
(fo(x))u axl_axj *

Note that the Hessian is always symmetric, since
O*f(x) _ 0*f(x)
Oxi0x;  Ox0x;




UCLA Matrix Calculus

Engineer Change.

Gradients of Linear Functions

For x € R", let f(x) = b x for some known vector b € R". Then

SO

8f(x) 8 be, _ bk

From this we can easily see that V, b x = b. This should be compared to the analogous
situation in single variable calculus, where 9/(0x) ax = a.
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Engineer Change.

Gradients of Quadratic Function
Now consider the quadratic function f(x) = x” Ax for A € S". Remember that

fx) =D Apix.

i=1 j=1

To take the partial derivative, we'll consider the terms including xx and x? factors separately:

of
e D) W

i=1 j=1
0
= 3_ Z Z AjjXiXj + Z AiXiXi + Z Ak XicXj + Akkxk
i#k j#£k i#k JF#k
— Z AikXi + Z AkjXj + 2A kXK
ik j#k

n n n
= Z Aikx; + Z Agjxj = 2 Z AkiXi,
i=1 j=1 i=1
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Engineer Change.

Hessian of Quadratic Functions

Finally, let's look at the Hessian of the quadratic function f(x) = xT Ax
In this case,

8f(x) 0 [0f(x) o [ &
Oxk0xp  Oxx [ Oxy } X ; 2iX 2k ke

Therefore, it should be clear that V2x " Ax = 2A, which should be entirely expected (and again
analogous to the single-variable fact that 8%/(0x?) ax? = 2a).
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Engineer Change.

Matrix Calculus Example: Least Squares

Given a full rank matrices A € R™*", and a vector b € R™ such that b ¢ R(A), we want
to find a vector x such that Ax is as close as possible to b, as measured by the square of
the Euclidean norm ||Ax — b||3.

Using the fact that ||x||3 = x x, we have

|Ax — b||3 = (Ax — b) T (Ax — b) = xTATAx —2b" Ax + b" b

Taking the gradient with respect to x we have:
Vi(xTATAx —2b"Ax+b"b) = V,x"ATAx —V,2b" Ax + V,b" b
= 2ATAx—2ATb
Setting this last expression equal to zero and solving for x gives the normal equations

x=(ATA)ATH
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Thank you!
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