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UCLA Roadmap

Engineer Change.

e Announcements
e SVM (Cont’d)
e Neural Networks

e KNN

e Project tips: Time Series Prediction



UCLA

Engineer Change.

Announcement

e Homework 2 due today, Oct 30 (Friday) 11:59 PT
o Submit through GradeScope of 1 PDF (2 python file and 1 jupyter notebook into 1

PDF file)

o Assign pages to the questions on GradeScope

e Homework 3 will be released later today, due Nov. 9 (Monday, Week 6) 11:59 PT

e Midterm project due on Nov. 11 (Wednesday, Week 6)

o 3-page midterm project report
o At least one submission to Kaggle

e Approximately 3 pages
e Current progress about project, including
o Data processing and transformation
o Designed & tested models / methods
e Discussion and future project plan
o Some conclusions and findings
o Analysis of current models and techniques
o  Timeline of future project plan (around the next 4 weeks)




UCLA SVM: Kernel

Engineer Change.

e The linear SVM relies on an inner product between data vectors,
I &
K(Xi7 Xj) — X Xj

e If every data point is mapped into high-dimensional space via transformation,
the inner product becomes,

T
K(xi,%xj5) = ¢~ (x3) - 9(x;5)
e Do we need to compute ¢(x) explicitly for each data sample? — Directly
compute kernel function K(xi, xj)



UCLA SVM: Kernel Function Example

Engineer Change.

Polynomial kernel of degree : K(X;, X;)=(X;-X; + 1)

2

. . . . - \ I | " 2 /9
Gaussian radial basis function kernel : K(X;, Xj)=¢ X=X (1" /20

Sigmoid kernel : K (X;, Xj) = tanh(xX; - X; —0)

e Kernel matrix is symmetric positive semi-definite.
e Given the same data samples, what is the difference between linear kernel and
non-linear kernel? Is the decision boundary linear (in original feature space)?



UCLA Non-linear SVM Solution

Engineer Change.

e Decision Boundary

Yy < sign [Z ;yi K (zi,z) + b

7




UCLA SVM: Overfitting

Engineer Change.

e Huge feature space with kernels: should we worry about overfitting?
o SVM objective seeks a solution with large margin.
o Theory says that large margin leads to good generalization.
o But everything overfits sometimes.
o Can control by:
m SettingC
m Choosing a better Kernel
m Varying parameters of the Kernel (width of Gaussian, etc.)



UCLA SVM: Understanding C

Engineer Change.

X X

e The C parameter tells the SVM optimization 2 o B » 2 o O o
how much you want to avoid misclassifying o X o X

. 0 oy X 0o |xX
each training example. S 1 %X o o 9%

e For large values of C, the optimization will g x %
choose a smaller-margin hyperplane if that o g
hyperplane does a better job of getting all the 1 Xq facgee X1
training points classified correctly. e

_ %2 %

e Conversely, a very small value of C will cause o %o X o %o X
the optimizer to look for a larger-margin & 80 )’:x & 80 ;(‘ X
separating hyperplane, even if that O 0o0f ywX 000 [yX

. . g . (o) o (o) o X (o) o (o) o X
hyperplane misclassified more points. 86 6le X oo ol¥%
0,0 0,0
Xq Xy
lowc large ¢

https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel



https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel

UCLA Neural Networks: Neuron/Perceptron

Engineer Change.

dendrites(receptive regions) (/\

impulse
direction oda of ranvier
I

N
~ terminal

https://medium.com/typeme/lets-code-a-neural-network-from-scratch-part-1-24f0a30d7d62
https://becominghuman.ai/what-is-an-artificial-neuron-8b2e421ce42e



https://medium.com/typeme/lets-code-a-neural-network-from-scratch-part-1-24f0a30d7d62
https://becominghuman.ai/what-is-an-artificial-neuron-8b2e421ce42e

UCLA  Neural Networks: A Simple Architecture

Engineer Change.

I-— HIDDEN LAYERS

1

INPUT

https://www.ptarey.com/deep-learning
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https://www.ptgrey.com/deep-learning

UCLA

Engineer Change.

eura

| Networks: Demo

e Let’s play with it:
https://playground.ten

sorflow.org/
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https://playground.tensorflow.org/
https://playground.tensorflow.org/

UCLA NN Example: XOR

e \Which NN architecture corresponds to which function?

1 threshold
1 011 1 111
Y 0]10]O0 Y ojo0t1
01 011
X X

Table 1: Truth table for AND Table 2: Truth table for OR

1 110
Y L 010]1
011
X Heaviside
Table 3: Truth Table for XOR (b) step © 3
function
https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function
http://yen.cs.stir.ac.uk/~kjt/techreps/pdf/ TR148.pdf
https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b



https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function
http://yen.cs.stir.ac.uk/~kjt/techreps/pdf/TR148.pdf
https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b

UCLA

NN Example: XOR

[U—
=Y
p—

0 1
Y 0]01]0 Y 010
0 0

X X
Table 1: Truth table for AND Table 2: Truth table for OR

1
Y 010
0

X
Table 3: Truth Table for XOR

https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function

http://ven.cs.stir.ac.uk/~kjt/techreps/pdf/ TR148.pdf
https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b

AND gate

NOT AND gate

A (@)



https://datascience.stackexchange.com/questions/11589/creating-neural-net-for-xor-function
http://yen.cs.stir.ac.uk/~kjt/techreps/pdf/TR148.pdf
https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b

UCLA

Engineer Change.

NN Example: XOR

Linear classifiers
cannot solve this

X1 X2
6(20*0 + 20*0 — 10) = 0
0(20*1 + 20*1-10) = 1
0(20*0 + 20*1—10) = 1
0(20*1 + 20*0—10) = 1

https://www.youtube.com/watch?v=kNPGXgzxoHw

. We can also use the
b=-10 0 ( 20x, + 20x, — 10) Heaviside step function
instead of sigmoid

o ( 20h, + 20h, - 30)

b=30 o (-20x, — 20x, + 30)
X1 X2
o (-20*0-20*0+30)=1 o(20*0+20*1-30)=0
o(-20*1-20*1+30)=0 o0(20*1+20*0-30)=0
0 (-20*0-20*1+30)=1 o (20*1 +20*1-30)=~1
o(-20*1-20*0+30)=x1 o0(20*1+20*1-30)=1


https://www.youtube.com/watch?v=kNPGXgzxoHw

UCLA NN Example: XOR (Cont'd)

Example: XOR

Consider a system that produces training data that follows the xor(-) function.
The xor function accepts a 2-dimensional vector x with components x; and x>
and returns 1 if 1 # x2. Concretely,

1 [ i) XOI‘(X)

8

el =)
—_— O = O
O = = O

(Note, we wouldn't know xor(x), but we would have samples of corresponding
inputs and outputs from training data. Hence, it may be better to simply
replace xor(x) with y(x) representing training examples.)



UCLA NN Example: XOR (Cont'd)

Engineer Change.

Example: XOR

Consider first a linear approximation of xor, via g(x) = w” x + b. Then,

T = D_(wx 4 b=y
OB~ W x b y(x)

X

Equating these to 0, we arrive at:

o O
[E—"

(w1+b—1){é]+(w2+b—1){2}+(w1+w2+b){ ” _ {

These two equations can be simplified as:

1 (w1 +b—1)+ (w1 +w2+b) = 0
(w2+b—1)+(w1+w2+b) = 0

These equations are symmetric, implying w1 = w2 = w. This means:

1— 3w

3w+20—1=0 = b= 5




UCLA NN Example: XOR (Cont'd)

Engineer Change.

Example: XOR

Now let's consider using a two-layer neural network, with the following

equation:
g(x) =w max(0, W x +¢)+b

We haven't yet discussed how to optimize these parameters, but the point here
is to show that by introducing a simple nonlinearity like f(x) = max(0,x), we
can now solve the xor(-) problem. Consider the solution:

w o [
c = [0,—-1]"



UCLA Multiclass Classification
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5 separate binary classifiers
Key: sharing the same hidden layers with different weights at the end
Question: Pros and cons?

https://developers.qgoogle.com/machine-learning/crash-course/multi-class-neural-networks/one-vs-all
http://www.briandolhansky.com/blog/2013/9/23/artificial-neural-nets-linear-multiclass-part-3



https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/one-vs-all
http://www.briandolhansky.com/blog/2013/9/23/artificial-neural-nets-linear-multiclass-part-3

UCLA

Engineer Change.

Neural Networks: Backpropagation

FORWARD PROPAGATION
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https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e

UCLA Neural Networks: Backpropagation

Engineer Change.

ofion, = 1

e Asimple example to &flan, = dlon, x an.Jan,
understand the intuition =1x1=1

o f(x,y) =X’y +y + 2
Forward pass:
o Xx=3, y=4 — f(3,4)=42 &lon,= oflan, x on an,

offon, = offen, x an.Jan,
=1x1=1

(1)
/8n2 = af/an5 X (’)nS/an2

e Backward pass: = ® N, =4 —1xn. =9
. 4
o Chain rule: n,
of _ of Lo N9 N
ox = on, * ox V. 2
[ , AAAAAAAAAAAAAAA 2 y 4 n3 2
F . T T Tt T T S I n1 . X 3 O T @)
i Another bettgr demo. : of/dy = of/an,, + dflon.= 1+ 9 = 10
: http://colah.github.io/posts/2015-08- , (1 (2) 2 2
|

)
oflox = n1><4 + n1><4 =24


http://colah.github.io/posts/2015-08-Backprop/
http://colah.github.io/posts/2015-08-Backprop/

UCLA 2-Layer NN Example

Engineer Change.

Neural network architecture

An example 2-layer network is shown below.

Here, the three dimensional inputs (x € R?) are processed into a four
dimensional intermediate representation (h € R*), which are then transormed
into the two dimensional outputs (z € R?).



UCLA 2-Layer NN Example

Engineer Change.

Layer 1: hy = f(Wi1x + b,)
Layer 2: ho = f(W2h; + b)

Layer N:z=Wxhxy_1+Dbxyn

Questions:

1. Neural network model (in equations)

2. Number of neurons?

3. Number of weight parameters / bias parameters / total learnable parameters?



UCLA 2-Layer NN Example

Engineer Change.

Demo in class : Back propagation for a 2-layer network




UCLA  Why understanding backpropagation?

Engineer Change.

e “Why do we have to write the backward pass when frameworks in the real
world, such as TensorFlow/PyTorch, compute them for you automatically?”
e Vanishing gradients on Sigmoids

sigmoid function

derivative of sigmoid

1.0 } . 1.0 |
0.8} - s 0.8 |- PR : oy
derivative is zero at tails

0.6 }- 0.6 - :

0.4} - - 0.4}

0.2 }- 0.2} S5 N .

0.0 |- 0.0+ .

| 1 1 | 1 | 1 1 1 1

-10 -5 0 5 10 -10 -5 0 5 10

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b



https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

UCLA  Why understanding backpropagation?

Engineer Change.

RelLU function derivative of ReLU
B 1.0 |- i
e RelLUs 81 0.8} e .
6 o6 | derivative exadtly zero here
e 0.4 |-
i 0.2 |
or 0.0 |
_iO -15 (l) ; 11() -10 -5 0 5 10
—tanh(z)
05r
e tanh ——— N |
-3 -2 1 1 2 a




UCLA  Why understanding backpropagation?

Engineer Change.

e Examples of activation function: Sigmoid, ReLU, leaky ReLU, tanh, etc
e Properties we focus:

o Differentiable

o Range: Whether saturated or not? (

o Whether zero-centered or not?
e Activation function family

o Wiki: https://en.wikipedia.org/wiki/Activation function



https://en.wikipedia.org/wiki/Activation_function

UCLA NN: Backpropagation Reading List

Engineer Change.

e Backpropagation (CS 231N at Stanford)
o https://cs231n.qithub.io/optimization-2/
o https://www.youtube.com/watch?v=i940vYb6noo
e (Optional) Matrix-Level Operation:
o https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-co
mplicated-97b794c97e5¢c



https://cs231n.github.io/optimization-2/
https://www.youtube.com/watch?v=i94OvYb6noo
https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c
https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c

UCLA NN: Number of iterations to converge

Engineer Change.

e Architecture/Meta-parameters of the network, e.g. # layers, activation
Quiality of training data (input-output correlation, normalization, noise
cleansing, class distribution/imbalance)

Random initialization of the parameters/weights

Optimization algorithm, e.g. SGD, Adam, etc.

Learning rate

Batch size

(In practice) Implementation quality (Bug-free? Optimized?)

https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e
https://www.quora.com/Machine-Learning-What-are-some-tips-and-tricks-for-training-deep-neural-networks



https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e
https://www.quora.com/Machine-Learning-What-are-some-tips-and-tricks-for-training-deep-neural-networks

UCLA NN Summary: Pros and Cons

Engineer Change.

« Weakness
* Long training time
« Require a number of parameters typically best determined empirically,
e.g., the network topology or “structure.”

 Poor mterpretability: Difficult to interpret the symbolic meaning
behind the learned weights and of “hidden units” 1in the network

- Strength
- High tolerance to noisy data
* Successful on an array of real-world data, e.g., hand-written letters
« Algorithms are inherently parallel

 Technmques have recently been developed for the extraction of rules
from trained neural networks

« Deep neural network 1s powerful



UCLA

Engineer Change.

NN Summary
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https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781788397872/1/ch01lvl1sec27/pros-and-cons-of-neural-networks
https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781788397872/1/ch01lvl1sec27/pros-and-cons-of-neural-networks
http://kseow.com/nn/
https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904ba5b

UCLA NN Summary: Pros and Cons

Engineer Change.

FPS:290.6644848 M:Floor B:Vertical structure/Wall

: Result of dense 3D reconstruction
Semantic Label and semantic label fusion

Efficiency (In many cases, prediction/inference/testing is fast)

https://www.packtpub.com/mapt/book/big_data _and business _intelligence/9781788397872/1/ch01Ivl1sec27/pros-and-cons-of-neural-networks
http://www.luigifreda.com/2017/04/08/cnn-slam-real-time-dense-monocular-slam-learned-depth-prediction/
http://www.missqt.com/google-translate-app-now-supports-instant-voice-and-visual-translations/



https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781788397872/1/ch01lvl1sec27/pros-and-cons-of-neural-networks
http://www.luigifreda.com/2017/04/08/cnn-slam-real-time-dense-monocular-slam-learned-depth-prediction/
http://www.missqt.com/google-translate-app-now-supports-instant-voice-and-visual-translations/

UCLA NN Summary: Pros and Cons

Engineer Change.

Inception-v4 We trained both our baseline models for about .

& Inception-v3 ) - 600,000 iterations (33 epochs) — this is similar A=
;s |ResNet-50 oy VGG-16 VGG-19 to the 35 epochs requl.refl by Nallapati et al.’s
‘ ResNet-34 (2016) best model. Training took 4 days and 14
Fvs ) reshiet 18 hours for the 50k vocabulary model, and 8 days 21
g 007 o enet hours for the 150k vocabulary model. We found
Bl e : the pointer-generator model quicker to train, re-
E © &n-NIN quiring less than 230,000 training iterations (12.8
6ol 5M 35M  65M  95M  125M  155M epochs); a total of 3 days and 4 hours. In par-
ENAlexNet ticular, the pointer-generator model makes much
55 AlexNet quicker progress in the early phases of training.
ments. This work was begun while the first author

it 5 10 15 >0 25 30 35 40 was an intern at Google Brain and continued at C

Operations [G-Ops] Stanford. Stanford University gratefully acknowl-
Efficiency (Big model — slow training, huge energy consumption (e.g. for cell phone))

https://www.kdnuggets.com/2017/08/first-steps-learning-deep-learning-image-classification-keras.htmil/2

See, Abigail, Peter J. Liu, and Christopher D. Manning. "Get to the point: Summarization with pointer-generator networks." arXiv preprint arXiv:1704.04368
(2017).

https://www.lifewire.com/my-iphone-wont-charge-what-do-i-do-2000147



https://www.kdnuggets.com/2017/08/first-steps-learning-deep-learning-image-classification-keras.html/2
https://www.lifewire.com/my-iphone-wont-charge-what-do-i-do-2000147

UCLA NN Summary: Pros and Cons

Engineer Change.

Why deep learning

Data Growth
40% per year

Deep learning

)U Pro\,&\ sing Power

®
o
c
©
=
—
o
=
[
o

Amount of data

Data (Both a pro and a con)

https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904ba5b



https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904ba5b

UCLA NN Summary: Pros and Cons

Engineer Change.

Computational Power (Both a pro and a con)

https://www.anandtech.com/show/10864/discrete-desktop-gpu-market-trends-g3-2016
https://www.zdnet.com/article/gpu-killer-qooqgle-reveals-just-how-powerful-its-tpu2-chip-really-is/



https://www.anandtech.com/show/10864/discrete-desktop-gpu-market-trends-q3-2016
https://www.zdnet.com/article/gpu-killer-google-reveals-just-how-powerful-its-tpu2-chip-really-is/

UCLA NN Summary: Pros and Cons

Engineer Change.

0.97

Neural Network 0.01

0.02

Black Box
Interpretability

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YOP! YOU POUR THE: DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE. LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904ba5b

https://xkcd.com/1838/



https://towardsdatascience.com/hype-disadvantages-of-neural-networks-6af04904ba5b
https://xkcd.com/1838/

UCLA KNN

Engineer Change.

e C(Classify an unknown example with the most common class among K nearest
examples
o “Tell me who your neighbors are, and I'll tell you who you are”
e Example

o K=3 A
TS
o 2 sea bass, 1 salmon length
o Classify as sea bass me=> e v
e e
O
T e g
| e g
i
=
L

/ightnes§



UCLA KNN: Multiple Classes

e Easy to implement for multiple classes

e Example forK=25
o 3 fish species: salmon, sea bass, eel
o 3 sea bass, 1 eel, 1 salmon — classify as sea bass

length
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xk}géé
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5§

_s
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lightness




UCLA KNN: How to Choose K?

Engineer Change.

e In theory, if infinite number of samples available, the larger K, the better
classification result you'll get.

e Caveat: all K neighbors have to be close
o Possible when infinite # samples available "t
o Impossible in practice since # samples if finite :

e Should we “tune” K on training data?
o Underfitting — Overfitting

e K=1 — sensitive to “noise” (e.g. see right)

noise

K=1:)



UCLA KNN: How to Choose K?

Engineer Change.

1 NN 3 NN
A =) A 2
o © ® _ noisy sample o © ®
= M = ®
o @ ® ©
2 g 5 @
e, = . ., =
@ a N
m ¥ g *a " g
" o ol
= = oz 8 =
every example in the blue every example in the blue
shaded area will be shaded area will be classified

misclassified as the blue class correctly as the red class



UC'-A KNN: How to Choose K?

e Larger K gives smoother boundaries, better for generalization
o Only if locality is preserved

o Koo large — looking at samples too far away that are not from the same class
e Can choose K through cross-validation

1-NN 5-NN 20-NN
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= 1 G ;‘« 3 1 ' ‘/\‘”‘Ui 3 o ;: 3
3 M ) 3 Ja .t | ) 3 Q'
7 = " " qu.;,_; 3y i ' r—. 22 33 $ ath $ 3
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a _e :)W N A :lj‘- < ? 3 ! 7 ‘:’ 23 l;
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3 |
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Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

“ picture from R. Gutierrez-Osuna



UCLA KNN: Decision Boundary

Engineer Change.

e \oronoi diagram

decision boundary




UCLA KNN: Decision Boundary

Engineer Change.

e Decision boundaries are formed by
a subset of the Voronoi Diagram of
the training data

e Each line segment is equidistant
between two points of opposite
class

e The more examples that are stored,
the more fragmented and complex
the decision boundaries can be.




UCLA KNN: Distance

Engineer Change.

e If we use Euclidean Distance to find the nearest neighbor:

D(a,b) = \/z(ak — by)?

k

e FEuclidean distance treats each feature as equally important
e Sometimes, some features (or dimensions) may be much more discriminative
than other features



UCLA KNN: Distance

Engineer Change.

Feature 1 gives the correct class: 1 or 2

Feature 2 gives irrelevant number from 100 to 200
Dataset: [1, 150], [2, 110]

Classify [1, 100]

11711 _ _
D<l100_'_150_)_\/(1_1)2+(100_150)2_50

11127\ _ — - =
D([100_'_110_)_‘/(1 2)2 + (100 — 110)2 = 10.5

Use Euclidean distance can result in wrong classification
Dense Example can help solve this problem




UCLA KNN: Distance

Engineer Change.

e Decision boundary is in red, and is really wrong because:
o Feature 1 is discriminative, but its scale is small
o Feature gives no class information but its scale is large, which dominates distance

calculation
1809 : : ‘ . ,
= ®
&
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-

10 : : : :
12 14 18 18
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UCLA KNN: Feature Normalization

Engineer Change.

e Normalize features that makes them be in the same scale
e Different normalization approaches may reflect the result
e Linear scale the feature in range [0,1]:

__ rmin
_ fold — fold
fnew ~ fmax __ fmin
old old

e Linear scale to 0 mean standard deviation 1(Z-score):

f _ fola — K
new — o




UCLA KNN: Feature Normalization

Engineer Change.

e Result comparison non-normalized vs normalized

1809 - - . . ] 1.5 ®
|
& — | ® @
160} )
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-1.5
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UCLA KNN: Feature Weighting

Engineer Change.

e Scale each feature by its importance for classification

D(a,b) = \[Z wy (ax — by)?
X

e Use prior/domain knowledge to set the weight w
e Use cross-validation to learn the weight w




UCLA KNN: Computational Complexity

e Suppose n examples with dimension d
e Complexity for KNN training?
e Complexity for KNN training?

O  For each point to be classified:
o Complexity for computing distance to one example
o Complexity for computing distances to all examples
o Find k closest examples
e Is it expensive for a large number of queries, compared to logistic regression,

SVM or neural network?



UCLA KNN: Summary

Engineer Change.

e Advantages:
o Can be applied to the data from any distribution
o The decision boundary is not necessarily to be linear
o Simple and Intuitive
o Good Classification with large number of samples

e Disadvantages:
o Choosing k may be tricky
o Test stage is computationally expensive
m No training stage, time-consuming test stage
m Usually we can afford long training step but fast testing speed
o Need large number of examples for accuracy



UCLA Time Series Prediction Models

Engineer Change.

* Most models assume the timeseries to be stationary, i.e. it tends to
wonder more or less uniformly about some fixed level. In practice,

differencing timeseries to achieve stationary (i.e. instead of
predicting cummulative value x;, predict Ax; = x; - x;_q.

' '
100 150 200

Day Day



UCLA Time Series Prediction Models

Engineer Change.

® AR (autoregressive) model. An AR model of order p can be written as:
Yt =C+ @Q1Yi—1 + P2Ys—2 + -+ QpYs—p + &t

® This is similar to linear regression model when we view historical data as feature
input.

Features |
(channels)
Historical data to be
conditioned on data
to be predicted.

Choose a proper
window size!




UCLA Time Series Prediction Models

Engineer Change.

« Diffusion model (SIR, SEIR , etc). Model continuous dynamics using ODE ['l.

Susceptible Infectious Recovered

Susceptible g Ex : Infectious Recovered

https://docs.idmod.org/projects/emod-generic/en/latest/model-sir.html



https://docs.idmod.org/projects/emod-generic/en/latest/model-sir.html

UCLA Time Series Prediction Models

Engineer Change.

e Deep Learning Based "'models:

?)z’,t+1 = f(yz',t—k:ta Ljt—k:ts Si)
Label

Dynamic Static

e Examples
Features Features

Recurrent Layer
Layer Encoder

Convolutional Attention Weights
Layer

Layer s ‘

Convolutional

Layer

Inputs Inputs . ‘ Inputs .

(a) CNN Model. (b) RNN Model. (c) Attention-based Model.

Py - = - } ;
Outputs O (:) ’(\:\: (\j\, '\jj O Q Outputs , ? ’ Outputs (_) O O O O C) <~/) D(\nan'nc
e o Attention

Bre . s

https://arxiv.org/pdf/2004.13408.pdf



https://arxiv.org/pdf/2004.13408.pdf

UCLA  Time Series Prediction Models: RNN

Engineer Change.
» A

=
;

&> —@

® ® (&)
1 I f
A » A » A
- & T, Ztia(g//z'[:t—l,xt])
e ;3, 7:t—0( r'[t—lyxt])
(0] [@nmh] hy = tanh (W - [ry * hy—1, x¢])
@ @ @ he = (1 — z) % hy—1 + 20 % B
t = ( ¢) % he_1 + 20 % hy
1 1 t | oF
B 4 N
© g
A Lebgtl] A
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| | http://colah.qithub.io/posts/2015-08-
@ ® @ Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Samueli
UCLA Computer Science

Thank you!

Q&A



