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UCLA Roadmap

Engineer Change.

e Announcement
e Similarity Measurement
e C(Classification evaluation

e Clustering: K-means



UCLA Announcement

Engineer Change.

e Homework 3 due Nov. 9 (Monday, Week 6) 11:59 PT
o Submit through GradeScope of 1 PDF (2 python file and 2 jupyter notebooks into 1
PDF file)
o Assign pages to the questions on GradeScope

e Midterm project due on Nov. 11 (Wednesday, Week 6)
o 3-page midterm project report « Approximately 3 pages
o At least one submission to Kaggle e Current progress about project, including

o Data processing and transformation
o Designed & tested models / methods
e Discussion and future project plan
o  Some conclusions and findings
o Analysis of current models and techniques
o Timeline of future project plan (around the next 4 weeks)

e Midterm exam on Nov. 16 (Monday, Week 7) on CCLE (with proper browser setting)



UCLA Similarity Matrix

Engineer Change.

e Similarity and dissimilarity matrix

® Pairwise measures how alike/different two data points are
e Example of numerical attribute

® Three 2-dim input, x1,x2,x3

® \We write the dissimilarity matrix as a 3x3 lower-triangular matrix

3 5 0
6 9 — d(2 1) 0 0
11 21 d(3,1) d@3,2) 0
e Dissimilarity under Euclidean distance
0 0 0
J(3B—6)2+(5-9)2 0 0

JB—-11)2+(5-21)2 J(11-6)2+(21-9)2 0



UCLA Nominal Attributes

Engineer Change.

e Student 1: likes Jazz, eats pizza, roots for the cubs, wears socks
e Student 2: likes Rock, eats pizza, roots for the cubs, goes barefoot
e d(Student 1, Student 2):

o m: # of matches — 2
o p: total # of variables — 4
o d(Student 1, Student 2) = (4-2)/4 = 0.5



UCLA Binary Attributes

Engineer Change.

e Symmetric binary attributes:
o Gender

e Asymmetric attributes:
o Preference, diagnosis, etc.

e Can be manually defined



UCLA Binary Attributes

Engineer Change.

e Dissimilarity of Binary Attributes: 1 ObJeCtO/ —
o Define 0 and 1 and calculate q,s,r,t,p
. . . Ob' t H 1 q T q+’r
e Symmetric binary variables: L 3 " g4
. r+8 . sum q+s r+t P
d(’l, .7) =
g4+r+8+1

e Asymmetric binary variables (0 is less important):

r+s
g+=r+3

d(i, j) =

e Jaccard coefficient (similarity measure for asymmetric
binary variables):

q

sStm 1,19) = ——
Jaccard(.]) q+r+s



UCLA

Engineer Change.

Binary Attributes Example

Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4
Jack |M = N P N N N
Mary |F 4 N P N P N
Jim |M Y P N N N N

Define M,Y,P as 1; Define FN as 0
Assume symmetric for Gender, asymmetric for other attributes
i = Jack, j = Mary, what is d(i, j) in terms asymmetric attributes?

O

O

r=0,s=1,g=2
d(i, j) = 0.32

Object /
1 0 sum
. SRENE q f g¥+r
- 0 $ t s+t
sum q+s r+i p



UCLA Ordinal Attributes

Engineer Change.

e Order is important
e Freshman, Sophomore, Junior, Senior
e Replace attribute by rank

r, € {1,...,Mf}

e Convert rank to numeric values

r.—1
Bl
1M1




UCLA Cosine Similarity

Engineer Change.

e For vector data
e d1:1like to go to the store
e d2:1like the cubs, go cubs go

cos(d,, d,) = (d, e d,)/|1d,11 |1d,]],
EEESE O E S ES S
di 1 1 2 il 1 1 0

d2 1 1 0 2 1 0 2

e cos(dl, d2)?
1-1+1-1+2:0+1-2+1-1+1-04+0-2
V12412422412 +12412+02-V12+12 402422 +12 402422




UCLA Mixed Attributes

Engineer Change.

0
All Together || |, 0 o
05 05 0
/ 0110 » L0 10 05 0
Object test-1 test-2 test-3
Identifier (nominal) (ordinal) (numeric 5
1 code A excellent 45 055 0
2 code B fair 22 045 1.00 0
3 code C good 64 0.40 0.14 086 0
4 code A excellent 28

* d(3,1)?
. 1(1)+1(0.5)+1(0.45)
3




UCLA Confusion Matrix

Engineer Change.

Confusion Matrix: How your model got confused

Actual class\Predicted class C, - C,

C, True Positives (TP) False Negatives (FN)
~C, False Positives (FP) True Negatives (TN)




UC!:’?‘ Evaluation Metric

AW | C | -C

C |TP|FN| P
-C |FP|[TN | N
P’ | N’ | All

Accuracy = (TP + TN)/All  Sensitivity =TP/P  precision — TP::-—PFP

L

Error rate = (FP + FN)/All  Specificity = TN/N  recan = B



Evaluation Metric

AW | C | -C
C |TP|(FN| P
-C |FP|[TN | N
P’ | N’ | All

Accuracy = (TP + TN)/All
Error rate = (FP + FN)/All

Why do we need all these measures? Isn’t

accuracy telling us how good the model is?

e Imbalanced data

e Imbalanced importance of positive and
negative

Sensitivity = TP/P precesion. = TP::-PFP
Specificity =TN/N  recar = T%I;—N



UCLA Evaluation Metric

Engineer Change.

Single number metric

e F measure (F1 score)

2 X precision X recall
_ _ precision + recall

e Area under the curve (AUC)

® ROC curve (true positive against false positive)

F =

® PRC (precision against recall)



UCLA  Receiver Operating Characteristics(ROC)

Engineer Change.

TPR
True positive rate: TPR = TP /P (sensitivity)

# C | Score s s s
R | 1° False positive rate: FPR = FP /N (1-specificity)
2 | p | 08 09 '
3 | N | 07
< P 0,6 0,8
5 | P | 055
6 | P | o054 |07
7 | N | 053
8 | N | 052 06
9 | p | 051
10 | N |os05| |9°
11| P | 04 53
12 | N | 039 ’
13 | P | 038 03
14 | N | 037
15| N | 036 | |02
16 | N | 035
17| p | 034 01 ¢
18 | N | 033
19| P | 03 00
20 N | o1 00 01 02 03 04 05 06 07 08 09 10 |[EPR

http://miwiki.org/index.php/ROC Analysis



http://mlwiki.org/index.php/ROC_Analysis

UCLA Clustering

Engineer Change.

e Input/ Output / Goal of clustering analysis
o Large amount of unlabeled data in real life

e Supervised learning v.s. unsupervised learning
e Typical clustering algorithm examples:
o K-means
o Hierarchical clustering
o DB-SCAN
o  Mixture models

Unsupervised Learning

O
OO
O




UCLA K-means

Engineer Change.

e Demo 1: http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
e Demo 2: https://www.naftaliharris.com/blog/visualizing-k-means-clusterina/



http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

UCLA

Engineer Change.
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UCLA K-means

Engineer Change.

e Key idea of K-means algorithms:
o Step 1: Partition into k non-empty subsets (select K points as initial centroids)
o Step 2: Iteration: Update mean point and assign object to cluster again
o Step 3: Stop when converge

e Partition-based clustering methods
e Can be considered as a special case of GMM



UCLA K-means

Engineer Change.

e Q1: Will K-means converge?
e Q2: Will different initialization of K-means generate different clustering
results?



UCLA K-means

Engineer Change.

e Q1: Will K-means converge?

e A1:Yes. k
J=2 > dzi¢)’
J=1C(i)=j
e Q2: WiIll different initialization of K-means generate different clustering
results?
e AZ2: Yes. Initialization matters!
. x e



UCLA K-means: Discussion

Engineer Change.

e Efficiency: O(tkn) normally k,t are much smaller
than n — efficient

e (Can terminate at a local optimum BT l £
e Need to specify k (or take time to find bestk) ~ - i ++ g
e Sensitive to noisy data and outliers ] e ® Jree & W
e Different sizes and variances S S
e Not suitable to discover clusters with non-convex

shapes

o Can K-medoids help?

e Many variants of K-means: ~

o K-means++, Genetics K-means, etc.




UCLA Hierarchical Clustering

e Method
o Divisive (Top-down)

© Agglomerative (BOttom_Up) Hierarchical Clustering

e Distance metrics
o Single linkage

Complete linkage Agglomerative | Divisive |

Average linkage

Centroid il
Medoid 7 - i ﬁz l EIL

e aNaatiil

o O O O




UCLA Hierarchical Clustering

Engineer Change.

e Single Linkage e Complete Linkage e Average Linkage

L(T', S) = lllill(D(x,.,--, xsj )) L(T', S) = II]RX( D(xri.* ij ))



UCLA DB-SCAN

Engineer Change.

Density-based clustering method
Discover clusters of arbitrary shape

Handle noise .
| S |
Demo 2ot
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https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

UCLA

Engineer Change.

DB-SCAN

» Two parameters:
« Eps: Maximum radius of the neighborhood

« MinPts: Minimum number of points in an Eps-
neighborhood of that point

* Ng,s(q): {p belongs to D | dist(p,q) < Eps}

« Directly density-reachable: A point p is directly density-
reachable from a point g w.r.t. Eps, MinPts if

« p belongs to /V, Lps(q)
* @ 1s a core point, core point Condition; ‘
| Nps (q@)| > MinPts %

MinPts = 5§
Eps=1cm




UCLA DB-SCAN

- Density-reachable:

* A point pis density-reachable from a
point g w.r.t. £ps, MinPrs if there 1s a
chain of ponts py, ..., p,, P;= ¢ P, = P

such that p,,, 1s directly density-reachable
from p,

- Density-connected

A point p1s density-connected to a point
gw.r.t. Eps, MinPts1f there 1s a point o
such that both, p and g are density-
reachable from ow.r.t. Epsand MinPts




UCLA

Engineer Change.

DB-SCAN

- Relies on a density-based notion of cluster: A cluster is defined as
a maximal set of density-connected points

- Noise: object not contained in any cluster is noise

» Discovers clusters of arbitrary shape in spatial databases with

noise

—@ ®
Border ;
®_©
Core ‘\’. .::
-..6 .

|

Noise

Eps = 1lcm
MinPts = 5




UCLA DB-SCAN

Engineer Change.

e Density-based clustering method
e Demo

e Pros and Cons
o It allows noise, so it is robust to outliers
It can figure out number of clusters automatically, as opposed to k-means
It can find arbitrarily shaped clusters
It is not deterministic, depending on the data processing order
It is not a good choice for clustering data sets with large differences in densities

O O O O


https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

epsilon =1.00
minPoints = 4

Restart
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Thank you!

Q&A



