

CS145 Discussion: Week 6 Midterm Review

Junheng Hao Friday, 11/13/2020

- Announcement
- Clustering
- Homework Conceptual Questions
- Midterm Review

- Midterm exam on Nov. 16 (Monday, Week 7) on CCLE
 - Two time slots: 10AM-11:30AM and 6:00PM-7:30PM (PST)
 - Lockdown Browser and Respondus Required
- Homework 4 due Nov. 20 (Friday, Week 7) 11:59 PT
 - Submit through GradeScope of 1 PDF
 - Assign pages to the questions on GradeScope

- <u>Generative model vs Discriminative model</u>
- EM algorithm
- More details on GMM

Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points stay close to their cluster centers

How can we model p(x) to reflect this?

Intuition

- We can model each region with a distinct distribution
- Common to use Gaussians, i.e.,
- Gaussian mixture models (GMMs) or mixture of Gaussians (MoGs).
- We don't know cluster assignments (label) or parameters of Gaussians or mixture components

A Gaussian mixture model has the following density function for $m{x}$

$$p(oldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(oldsymbol{x} | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) \; ,$$

- K: the number of Gaussians they are called (mixture) components
- μ_k and Σ_k : mean and covariance matrix of the k-th component
- ω_k: mixture weights they represent how much each component contributes to the final distribution. It satisfies two properties:

$$orall \, k, \; \omega_k > 0, \quad { ext{and}} \quad \sum_k \omega_k = 1$$

The properties ensure $p(\boldsymbol{x})$ is a properly normalized probability density function.

Consider the following joint distribution

$$p(\boldsymbol{x}, z) = p(z)p(\boldsymbol{x}|z)$$

where \boldsymbol{z} is a discrete random variable taking values between 1 and K. Denote

$$\omega_k = p(z=k)$$

Now, assume the conditional distributions are Gaussian distributions

$$p(\boldsymbol{x}|z = k) = N(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Then, the marginal distribution of \boldsymbol{x} is

$$p(oldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(oldsymbol{x} | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$

Namely, the Gaussian mixture model

The conditional distribution between \boldsymbol{x} and \boldsymbol{z} (representing color) are

$$p(\boldsymbol{x}|z = red) = N(\boldsymbol{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$
$$p(\boldsymbol{x}|z = blue) = N(\boldsymbol{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$
$$p(\boldsymbol{x}|z = green) = N(\boldsymbol{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

The marginal distribution is thus $p(\boldsymbol{x}) = p(red)N(\boldsymbol{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(blue)N(\boldsymbol{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ $+ p(green)N(\boldsymbol{x}|\boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$

The parameters in GMMs are $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$. To estimate, consider the simple (and unrealistic) case first.

We have labels z If we assume z is observed for every x, then our estimation problem is easier to solve. Our training data is augmented:

$$\mathcal{D}' = \{oldsymbol{x}_n, z_n\}_{n=1}^N$$

 z_n denotes the region where x_n comes from. \mathcal{D}' is the *complete* data and \mathcal{D} the *incomplete* data. How can we learn our parameters?

Given \mathcal{D}' , the maximum likelihood estimation of the θ is given by

$$oldsymbol{ heta} = rg\max\log P(\mathcal{D}') = \sum_n \log p(oldsymbol{x}_n, z_n)$$

The *complete* likelihood is decomposable

$$\sum_{n} \log p(\boldsymbol{x}_n, z_n) = \sum_{n} \log p(z_n) p(\boldsymbol{x}_n | z_n) = \sum_{k} \sum_{n: z_n = k} \log p(z_n) p(\boldsymbol{x}_n | z_n)$$

where we have grouped data by its values z_n . Let us introduce a binary variable $\gamma_{nk} \in \{0, 1\}$ to indicate whether $z_n = k$. We then have

$$\sum_{n} \log p(\boldsymbol{x}_n, z_n) = \sum_{k} \sum_{n} \gamma_{nk} \log p(z=k) p(\boldsymbol{x}_n | z=k)$$

We use a "dummy" variable z to denote all the possible values cluster assignment values for ${\boldsymbol x}_n$

 \mathcal{D}' specifies this value in the complete data setting

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \left[\log \omega_{k} + \log N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]$$

Regrouping, we have

$$\sum_{n} \log p(\boldsymbol{x}_{n}, z_{n}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

The term inside the braces depends on k-th component's parameters. It can be shown that the MLE is:

$$egin{aligned} & \omega_k = rac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad oldsymbol{\mu}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} oldsymbol{x}_n \ & oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{\mathrm{T}} \end{aligned}$$

When z_n is not given, we can guess it via the posterior probability

$$p(z_n = k | \boldsymbol{x}_n) = \frac{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}{p(\boldsymbol{x}_n)} = \frac{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}{\sum_{k'=1}^{K} p(\boldsymbol{x}_n | z_n = k') p(z_n = k')}$$

To compute the posterior probability, we need to know the parameters θ !

Let's pretend we know the value of the parameters so we can compute the posterior probability.

How is that going to help us?

Engineer Change.

Estimation with soft γ_{nk}

We define $\gamma_{nk} = p(z_n = k | \boldsymbol{x}_n)$

- Recall that γ_{nk} should be binary
- Now it's a "soft" assignment of $oldsymbol{x}_n$ to k-th component
- Each \boldsymbol{x}_n is assigned to a component fractionally according to $p(z_n=k|\boldsymbol{x}_n)$

We now get the same expression for the MLE as before!

$$egin{aligned} & \omega_k = rac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad oldsymbol{\mu}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} oldsymbol{x}_n \ & oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{ ext{T}} \end{aligned}$$

But remember, we're 'cheating' by using θ to compute γ_{nk} !

We can alternate between estimating γ_{nk} and using the estimated γ_{nk} to compute the parameters (same idea as with *K*-means!)

- Step 0: initialize θ with some values (random or otherwise)
- Step 1: compute γ_{nk} using the current ${m heta}$
- Step 2: update $\boldsymbol{\theta}$ using the just computed γ_{nk}
- Step 3: go back to Step 1

Questions:

- Is this procedure reasonable, i.e., are we optimizing a sensible criteria?
- Will this procedure converge?

The answers lie in the *EM algorithm* — a powerful procedure for model estimation with unknown data.

No simple way to optimize the incomplete log-likelihood

Expectation-Maximization (EM) algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

- E-step: 'guess' values of the z_n using existing values of ${m heta}$
- M-step: solve for new values of θ given imputed values for z_n (maximize complete likelihood!)

E-step: Soft cluster assignments

We define γ_{nk} as $p(z_n = k | \boldsymbol{x}_n, \boldsymbol{\theta})$

- This is the posterior distribution of z_n given $oldsymbol{x}_n$ and $oldsymbol{ heta}$
- $\bullet\,$ Recall that in complete data setting γ_{nk} was binary
- Now it's a "soft" assignment of x_n to k-th component, with x_n assigned to each component with some probability

Given $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$, we can compute γ_{nk} using Bayes theorem:

$$egin{split} &\gamma_{nk} = p(z_n = k | m{x}_n) \ &= rac{p(m{x}_n | z_n = k) p(z_n = k)}{p(m{x}_n)} \ &= rac{p(m{x}_n | z_n = k) p(z_n = k)}{\sum_{k'=1}^{K} p(m{x}_n | z_n = k') p(z_n = k')} \end{split}$$

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

$$\sum_{n} \log p(oldsymbol{x}_n, z_n) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_k + \sum_{k} \left\{ \sum_{n} \gamma_{nk} \log \mathcal{N}(oldsymbol{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)
ight\}$$

Previously γ_{nk} was binary, but now we define $\gamma_{nk} = p(z_n = k | \boldsymbol{x}_n)$ (E-step)

We get the same simple expression for the MLE as before!

$$\omega_k = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \boldsymbol{\mu}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n$$
$$\boldsymbol{\Sigma}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

Intuition: Each point now contributes some fractional component to each of the parameters, with weights determined by γ_{nk}

Questions to be answered next

- How does GMM relate to *K*-means?
- Is this procedure reasonable, i.e., are we optimizing a sensible criterion?
- Will this procedure converge?

• Example 1: Manual calculation of the M step of GMM

Consider clustering ID data with a mixture of 2 gaussian. You're given the 1-D data points $x = [1 \ 10 \ 20]$. Suppose the E step is the following matrix :

- a. What's the mixing weights after M-step?
- b. What's the new values of means after M-step?

GMM: Calculation Helper

Expectation (E) Step: Calculate $\forall i, k$ $\hat{\gamma}_{ik} = \frac{\hat{\phi}_k \mathcal{N}(x_i \mid \hat{\mu}_k, \hat{\sigma}_k)}{\sum_{j=1}^K \hat{\phi}_j \mathcal{N}(x_i \mid \hat{\mu}_j, \hat{\sigma}_j)},$ where $\hat{\gamma}_{ik}$ is the probability that x_i is generated by component C_k . Thus, $\hat{\gamma}_{ik} = p(C_k | x_i, \hat{\phi}, \hat{\mu}, \hat{\sigma}).$ Maximization (M) Step:

Using the $\hat{\gamma}_{ik}$ calculated in the expectation step, calculate the following in that order orall k :

•
$$\hat{\phi}_k = \sum_{i=1}^{N} \frac{\hat{\gamma}_{ik}}{N}$$

• $\hat{\mu}_k = \frac{\sum_{i=1}^{N} \hat{\gamma}_{ik} x_i}{\sum_{i=1}^{N} \hat{\gamma}_{ik}}$
• $\hat{\sigma}_k^2 = \frac{\sum_{i=1}^{N} \hat{\gamma}_{ik} (x_i - \hat{\mu}_k)^2}{\sum_{i=1}^{N} \hat{\gamma}_{ik}}$

Example: Clustering Evaluation

[HW4] Calculate:

Purity, precision, recall, F-measure, and normalized mutual information

ID	Conference Name	Ground Truth Label	Algorithm output Label
1	IJCAI	3	2
2	AAAI	3	2
3	ICDE	1	3
4	VLDB	1	3
5	SIGMOD	1	3
6	SIGIR	4	4
7	ICML	3	2
8	NIPS	3	2
9	CIKM	4	3
10	KDD	2	1
11	WWW	4	4
12	PAKDD	2	1
13	PODS	1	3
14	ICDM	2	1
15	ECML	3	2
16	PKDD	2	1
17	EDBT	1	2
18	SDM	2	1
19	ECIR	4	4
20	WSDM	4	4

Task	Vector data	
Classification	Logistic Regression; Decision Tree; KNN; SVM; Neural Networks	
Clustering	K-means; Hierarchical clustering; DBSCAN; Mixture Models	
Prediction	Linear Regression	

Task	Vector data
Classification	Logistic Regression; Decision Tree; KNN; SVM; Neural Networks
Clustering	K-means; Hierarchical clustering; DBSCAN; Mixture Models
Prediction	Linear Regression

- Closed-form, batch gradient descent, stochastic gradient descent
- Regularization terms in linear regression and logistic regression

• Calculate information gain and split info

Split 2

• Calculate SVM decision boundary and predict on new data

• Forward pass and backward pass of a toy neural net

Homework 3: Back-prop Calculation

This slides is left blank intentionally for discussion demonstration.

Thank you!

Q & A