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UCLA Roadmap

Engineer Change.

e Announcement
e (lustering
e Homework Conceptual Questions

e Midterm Review



UCLA Announcements

Engineer Change.

e Midterm exam on Nov. 16 (Monday, Week 7) on CCLE
o Two time slots: 10AM-11:30AM and 6:00PM-7:30PM (PST)
o Lockdown Browser and Respondus Required

e Homework 4 due Nov. 20 (Friday, Week 7) 11:59 PT
o  Submit through GradeScope of 1 PDF
o Assign pages to the questions on GradeScope



UCLA Gaussian Mixture Model

e Generative model vs Discriminative model

Delay )

e EM algorithm ‘°°
e [More details on GMM st
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https://medium.com/@mlengineer/generative-and-discriminative-models-af5637a66a3
https://brilliant.org/wiki/gaussian-mixture-model/#citation-2

UCLA Gaussian Mixture Model

Engineer Change.

Probabilistic interpretation of clustering?
We can impose a probabilistic interpretation of our intuition that points
stay close to their cluster centers

How can we model p(x) to reflect this?
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UCLA Gaussian Mixture Model

Intuition

e \We can model each region with
a distinct distribution

e Common to use Gaussians, i.e.,

e Gaussian mixture models
(GMMs) or mixture of
Gaussians (MoGs).

e We don't know cluster
assignments (label) or
parameters of Gaussians or
mixture components
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UCLA Gaussian Mixture Models: Formulation

Engineer Change.

A Gaussian mixture model has the following density function for

K

p(@) =Y wpN(a|px, i)
k=1

e K: the number of Gaussians — they are called (mixture) components
@ . and X;: mean and covariance matrix of the k-th component

@ wy: mixture weights — they represent how much each component
contributes to the final distribution. It satisfies two properties:

Yk >0 and Zwkzl
k

The properties ensure p(x) is a properly normalized probability
density function.



UCLA

Engineer Change.

Gaussian Mixture Models: Formulation

Consider the following joint distribution

p(x, z) = p(z)p(x|z)

where z is a discrete random variable taking values between 1 and K.
Denote

wy = p(z = k)

Now, assume the conditional distributions are Gaussian distributions
p(x|z = k) = N(@|pp, Xi)

Then, the marginal distribution of x is

K

p(@) = > wpN(@|wmr, S)
h=1

Namely, the Gaussian mixture model




UCLA Gaussian Mixture Models: Formulation

Engineer Change.

The conditional distribution between x and z
(representing color) are

p(x|z =red) = N(x|p1,31)
p(z|z = blue) = N(xz|p2, X2)
o p(x|z = green) = N(x|us, X3)

The marginal distribution is thus

p(x) = p(red)N(x|p1,X1) + p(blue) N (x| pa, X2)
+ p(green)N (x| ps3, X3)




UCLA

Engineer Change.

Gaussian Mixture Models: Formulation

The parameters in GMMs are 0 = {wy, pi, Zk}i{:l. To estimate, consider
the simple (and unrealistic) case first.

We have labels 2 If we assume z is observed for every x, then our
estimation problem is easier to solve. Our training data is augmented:

D = {zn, Zn}fzvzl

2, denotes the region where x,, comes from. D’ is the complete data and
D the incomplete data. How can we learn| our parameters?

Given D/, the maximum likelihood estimation of the @ is given by

0 = argmax log P(D') = Zlogp (T, 2n)




UCLA

Engineer Change.

Gaussian Mixture Models: Formulation

The complete likelihood is decomposable

Zlogp(a:n,zn) Zlogp i Z Z logplzy )P 5
n

k nizn=k

where we have grouped data by its values z,. Let us introduce a binary
variable v, € {0,1} to indicate whether z,, = k. We then have

Z log Pl Z) = Z Z%k logplz = kb)pl@sl2 = &)
n k n

We use a “dummy” variable z to denote all the possible values cluster
assignment values for x,,

D’ specifies this value in the complete data setting




UCLA Gaussian Mixture Models: Formulation

Engineer Change.

Parameter estimation for GMMs: complete data

From our previous discussion, we have

Z logp(wnv Zn) — Z Z Ynk [log wg + 10g N(mn|uk7 Ek)]
n kK n

Regrouping, we have

Zlogp(wnazn) - Z Z’Ynk: logwkz o Z {Z’Yﬂk logN<wn‘l1’k:a Zk‘)}
n k n k n

The term inside the braces depends on k-th component’s parameters. It can be
shown that the MLE is:

W= ~— - M= TnkL
1
3y = > iy — ) (P — B)”




UCLA Gaussian Mixture Models: Formulation

Engineer Change.

When z,, is not given, we can guess it via the posterior probability

p(Tn|zn = k)p(2n = k) _ p(Tn|2n = k)p(2n = k)
p(xn) 21521 p(Tn|zn = K )p(2n = ')

To compute the posterior probability, we need to know the parameters 6!

p(zn = k|wn) =

Let's pretend we know the value of the parameters so we can compute the
posterior probability.

How is that going to help us?



UCLA

Engineer Change.

Gaussian Mixture Models: Formulation

Estimation with soft v,

We define v, = p(zn, = k|xs)
@ Recall that 7, should be binary
@ Now it's a “soft” assignment of @, to k-th component

@ Each x,, is assigned to a component fractionally according to
p(zn = k|mn)

We now get the same expression for the MLE as before!

Wk = o Mk = YnkL
Zkz Zn Tnk Zn Tnk Z S

1
= Vnk(Tn — g )(Tn — Kk
S Domten st

But remember, we're ‘cheating’ by using 6 to compute !




UCLA Gaussian Mixture Models: Formulation

Engineer Change.

We can alternate between estimating v, and using the estimated 7, to
compute the parameters (same idea as with K-means!)

@ Step O: initialize @ with some values (random or otherwise)
@ Step 1: compute 7, using the current 0
@ Step 2: update 0 using the just computed v,z
@ Step 3: go back to Step 1
Questions:
@ Is this procedure reasonable, i.e., are we optimizing a sensible criteria?

@ Will this procedure converge?

The answers lie in the EM algorithm — a powerful procedure for model
estimation with unknown data.



UCLA Gaussian Mixture Models: Formulation

Engineer Change.

No simple way to optimize the incomplete log-likelihood

Expectation-Maximization (EM) algorithm provides a strategy for
iteratively optimizing this function

Two steps as they apply to GMM:
@ E-step: ‘guess’ values of the z,, using existing values of 6

@ M-step: solve for new values of @ given imputed values for z,
(maximize complete likelihood!)



UCLA Gaussian Mixture Models: Formulation

Engineer Change.

E-step: Soft cluster assignments

We define v,x as p(z, = k|xy,, 0)
@ This is the posterior distribution of z,, given @, and 6
@ Recall that in complete data setting v, was binary

@ Now it's a “soft” assignment of x,, to k-th component, with x,,
assigned to each component with some probability

Given 0 = {wy, px, Ek}szl, we can compute 7, using Bayes theorem:

Yok = P(2n = k|Tn)
_ p(xn|2n = k)p(2n = k)
p(xn)
_ p(Tn|2n = k)p(2n = k)
2521 p(xnl2n = K)p(zn = k')




UCLA Gaussian Mixture Models: Formulation

Engineer Change.

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

Zlogp(wna Zn) = Z Z’)’nk’ log wy, + Z {Z'Ynk IOgN("Bn’H'k, 214:)}
n n k n

k
Previously v, was binary, but now we define v, = p(z, = k|x,) (E-step)

We get the same simple expression for the MLE as before!

W= — 1 Me=——— § kT
Zk Zn Tnk Zn Tnk 7 e
1 AR
Yp = E k(T i )(Tn — Kk
Zn fYnk ’Yn ( n )( n )

Intuition: Each point now contributes some fractional component to each
of the parameters, with weights determined by 7,1



UCLA Gaussian Mixture Models: Formulation

Engineer Change.

Questions to be answered next
@ How does GMM relate to K-means?

@ Is this procedure reasonable, i.e., are we optimizing a sensible
criterion?

@ Will this procedure converge?



UCLA GMM: Examples

Engineer Change.

e Example 1. Manual calculation of the M step of GMM
Consider clustering ID data with a mixture of 2 gaussian. You're given the 1-D data

points x = [1 10 20]. Suppose the E step is the following matrix :

[ 1 0O
0.4 0.6
0 1 ]

a. What's the mixing weights after M-step?

b. What's the new values of means after M-step?



UCLA GMM: Calculation Helper

Engineer Change.

Expectation (E) Step:

Calculate Vi, k

- SN (i | fux, 64)

| Ef—l oiN (zi | iy, 6)
(L, &).

where 4. is the probability that z; is generated by component Cy. Thus, 4. = p(Cjlz:, ¢, 2

?

Maximization (M) Step:

Using the ¥;;. calculated in the expectation step, calculate the following in that order Yk :

N .
Z Yik
N
o 25{1 Yik T
k= N -
Zi—l Vik
ANV -~ ~ ¢
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UCLA Example: Clustering Evaluation

Engineer Change.

[HW4] Calculate:

Purity, precision, recall, F-measure,
and normalized mutual information

o

Conference Name

Ground Truth Label

Algorithm output Label

1JCAI

3

2

AAAI

ICDE

VLDB

SIGMOD

SIGIR

ICML

NIPS

O (0N W|N |-

CIKM

[
o

KDD

[y
[N

WwWWw

=
N

PAKDD

R
w

PODS

R
H

ICDM

-
(%}

ECML

=
(9]

PKDD

[
~N

EDBT

(R
(0]

SDM

R
o

ECIR

N
o

WSDM

S IBEINIPINIWINERINIBAINIAPIWIW|S (P[P (FPRW

AP RPINIPINFPWIRL|IAFRPIWININ AW IW IW|N




UCLA

Engineer Change.

Midterm Topics

Task

Classification

Clustering

Prediction

Vector data

Logistic Regression,;
Decision Tree;
KNN;

SVM;

Neural Networks

K-means;
Hierarchical clustering;
DBSCAN;
Mixture Models

Linear Regression




UCLA

Engineer Change.

Midterm Topics

: XOR Example

Task

Vector data

Classification

Logistic Regression;
Decision Tree;
KNN;

SVM;

Neural Networks

Clustering

Prediction

K-means;
Hierarchical clustering;
DBSCAN;
Mixture Models

Linear Regression




UCLA Homework 1

Engineer Change.

e Closed-form, batch gradient descent, stochastic gradient descent

e Regularization terms in linear regression and logistic regression



UCLA Homework 2: Decision Tree

Engineer Change.

e Calculate information gain and split info

Split 1
[ 400 M, 400F }

Node 11 /\ Node 12

[ 300 M, 100 F } [ 100 M, 300 F }

Split 2

[ 400 M, 400F }

Node 21 /\ Node 22

[400M,200F} [ 0 M, 200 F }




UCLA Homework 2: SVM

Engineer Change.

e Calculate SVM decision boundary and predict on new data



UCLA Homework 3

Engineer Change.

e Forward pass and backward pass of a toy neural net

<

Input layer Hidden layer Output layer



UCLA Homework 3: Back-prop Calculation

Engineer Change.

This slides is left blank intentionally for discussion demonstration.
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Thank you!

Q&A



