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UCLA Roadmap

Engineer Change.

e Announcement
e Lecture Review

e Programming Prep for Problem Sets



UCLA Announcements

Engineer Change.

e 5:00pm PST, Jan. 15: Weekly quiz 2 released on Gradescope.
11:59pm PST, Jan. 17 (Sunday): Weekly quiz 2 closed on Gradescope!
o Start the quiz before 11:00pm PST, Jan. 17 to have the full 60-minute time
e 5:00pm, Jan. 15: Problem set 1 released on campuswire/CCLE, submission on
Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
o You do not need to submit code, only the results required by the problem set
o Dueon 11:59pm PST, Jan. 29 (Friday)
e Thereis no class on Jan. 18 (Monday), in observance of Martin Luther King Jr. Day.



UCLA About Quiz 2

Engineer Change.

Quiz release date and time: Jan 15, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Jan 17, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 2 Quiz" on GradeScope.
Topics: Decision Tree, Nearest Neighbors, General machine learning basics and pipeline
Question Types

o True/false, multiple choices, and auto-graded short answers (fill blanks)

o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.
More Info: https://campuswire.com/c/GB5E561C3/feed/57



https://campuswire.com/c/GB5E561C3/feed/57

UCLA Part I

er Change.

Lecture Review
Decision Tree, Nearest Neighbors, ML Pipelines



UCLA Decision Tree

Engineer Change.

e Decision Tree Classification: From data to model
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UCLA Decision Tree: Takeaway

Engineer Change.

e Choosing the Splitting Attribute

e At each node, available attributes are evaluated on the basis of separating
the classes of the training examples.

e A goodness function (information measurement) is used for this purpose:

o Information Gain
o Gain Ratio*
o Gini Index*



UCLA Decision Tree: Attribute Selection

Engineer Change.

e Which is the best attribute?

o The one which will result in the smallest tree

o Heuristic: choose the attribute that produces the “purest” nodes
e Popular impurity criterion: information gain

o Information gain increases with the average purity of the subsets that an
attribute produces

e Strategy: choose attribute that results in greatest information gain



UCLA Decision Tree: Entropy of Random Variable

Engineer Change.
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UCLA Decision Tree: Attribute Selection

Engineer Change.

e Information in a split with x items of one class, y items of the second class

info([x, y]) = entropy( x , 4
X+y X+Yy
X X y

=~ log(——) ——>—log(——)
xX+y xX+y x+y X+ y




Decision Tree: Example for Practice
UCLA ° €¢ ) €¢ b3/
Attribute: “Outlook” = “Sunny

e “Outlook” =“Sunny”: 2 and 3 split

3
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info([2,3]) = entropy(2/5,3/5) = —glog(%) — log(%) =0.971bits

outlook

overcast rainy

es . es

zes yes zes

no yes yes

no yes no
yes

no no




Decision Tree: Example for Practice
UCLA ° €¢ b3 (14 7
Attribute: “Outlook” = “Overcast

e “Outlook” = “Overcast”: 4/0 split

Note: log(0) is not defined, but
info([4,0]) = entropy(1,0) =—1log(1)|- Olog(O)\z Obits  we evaluate 0*log(0) as zero.
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Decision Tree: Example for Practice
UCLA ° €€ b3 €¢ ° b3
Attribute: “Outlook™ = “Rainy

e “Outlook” = “Rainy”:

info([3,2]) = entropy(3/5,2/5) = —%log(%) _2

2
—log(—=) =0.971 bits
5 g(s)
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UCLA Decision Tree: Example for Practice
maneercrense. - EXP@Cted Information of Attribute “Outlook™

Expected information for attribute:

info([3,2],[4,01,[3,2]) = (5/14)x 0.971+ (4/14)x 0+ (5/14)x 0.971

=0.693 bits



UCLA Compute Information Gain

Information gain:
(information before split) — (information after split)

gain(" Outlook") = info([9,5]) - info([2,3], 4,01, [3,2]) = 0.940 - 0.693
= 0.247 bits

Information gain for attributes from all weather data:

gain("Outlook") = 0.247 bits
gain("Temperature") = 0.029 bits
gain("Humidity") = 0.152 bits
gain("Windy") = 0.048 bits



Decision Tree: Example for Practice
UCLA L] L]
Engineer Change. Continue to Split




UCLA Final Tree

no“yes‘ ‘yes“no‘

« Note: Not all leaves need to be pure. Sometimes identical instances have
different classes.
- Splitting can stop when data can’t be split any further.



UCLA Decision Tree: Visual Tutorials

Engineer Change.

e Demo links
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http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://explained.ai/decision-tree-viz/

UCLA KNN

Engineer Change.

e C(lassify an unknown example with the most common class among K nearest
examples
o “Tell me who your neighbors are, and I'll tell you who you are”
e Example
o K=3
o 2 seabass, 1 salmon
o Classify as sea bass



UCLA KNN: Multiple Classes

e Easytoimplement for multiple classes

e ExampleforK=5
o 3 fish species: salmon, sea bass, eel
o 3 seabass, 1 eel, 1 salmon — classify as sea bass
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UCLA KNN: How to Choose K?

Engineer Change.

e Intheory, if infinite number of samples available, the larger K, the better
classification result you’ll get.
e Caveat: all K neighbors have to be close "t

o Possible when infinite # samples available
o Impossible in practice since # samples if finite

e Should we “tune” K on training data?
o Underfitting = Overfitting

e K=1- sensitive to “noise” (e.g. see right)

noise °

K=1:)



UCLA KNN: How to Choose K?

Engineer Change.
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UCLA KNN: How to Choose K?

Engineer Change.

e Larger K gives smoother boundaries, better for generalization

o Only if locality is preserved

o Ktoo large — looking at samples too far away that are not from the same class
e Can choose K through cross-validation
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Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

“ picture from R. Gutierrez-Osuna



UCLA KNN: Decision Boundary

Engineer Change.

e \Voronoi diagram

decision boundary




UCLA KNN: Decision Boundary

Engineer Change.

e Decision boundaries are formed by a
subset of the Voronoi Diagram of the
training data

e Each line segment is equidistant
between two points of opposite class

e The more examples that are stored, the
more fragmented and complex the
decision boundaries can be.




UCLA KNN: Distance

Engineer Change.

e If we use Euclidean Distance to find the nearest neighbor:

D(a,b) = \/Z(ak — by)?
K

e Euclidean distance treats each feature as equally important
e Sometimes, some features (or dimensions) may be much more
discriminative than other features




UCLA

Engineer Change.

KNN: Distance

Feature 1 gives the correct class: 1 or 2
Feature 2 gives irrelevant number from 100 to 200
Dataset: [1, 150], [2, 110]

Classify [1, 100]

7
2 ([100]

1]
2 ([100_ ’

PR
[150]

Ty

1110

) =,/(1—1)2 + (100 — 150)2 = 50

) = /(1 —2)? + (100 — 110)Z = 10.5

Use Euclidean distance can result in wrong classification
Dense Example can help solve this problem




UCLA KNN: Distance

Engineer Change.

e Decision boundary is inred, and is really wrong because:
o Feature 1 is discriminative, but its scale is small
o Feature gives no class information but its scale is large, which dominates distance
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UCLA KNN: Feature Normalization

Engineer Change.

e Normalize features that makes them be in the same scale
e Different normalization approaches may reflect the result
e Linear scale the feature in range [0,1]:

__ rmin
_ fold — fold
fnew ~ fmax __ fmin
old old

e Linear scale to 0 mean standard deviation 1(Z-score):

f _ fola — K
new — o




UCLA KNN: Feature Normalization

Engineer Change.

e Result comparison non-normalized vs normalized
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UCLA KNN: Feature Weighting

Engineer Change.

e Scale each feature by its importance for classification

D(a,b) = \[Z wy (ax — by)?
X

e Use prior/domain knowledge to set the weight w
e Use cross-validation to learn the weight w




UCLA KNN: Computational Complexity

e Suppose n examples with dimension d
e Complexity for KNN training?
e Complexity for KNN training?

O  Foreach point to be classified:

o Complexity for computing distance to one example
o Complexity for computing distances to all examples
o Find k closest examples

e Is it expensive for a large number of queries?



UCLA KNN: Summary

Engineer Change.

e Advantages:
o Can be applied to the data from any distribution
o The decision boundary is not necessarily to be linear
o Simple and Intuitive
o Good Classification with large number of samples

e Disadvantages:
o Choosing k may be tricky
o Test stage is computationally expensive
m No training stage, time-consuming test stage
m Usually we can afford long training step but fast testing speed
o Need large number of examples for accuracy



UCLA ML Pipeline: Evaluation Your Models

Engineer Change.

Training data (set)
@ N samples/instances: D™*N = {(x1,y1), (x2,¥y2), -, (N, YN) }
@ They are used for learning h(-)

Test (evaluation) data
@ M samples/instances: D™ = {(x1, y1), (®2,¥2), - , (M, ym)}

@ They are used for assessing how well A(-) will do in predicting an
unseen x ¢ DTRAN

Development (or validation) data

oL samples/instances: DPPY = {(wla y1)7 (332, y2)7 Ty (mLa yL)}
@ They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap!



UCLA

Engineer Change.

Cross Validation

@ We split the training data into
K equal parts (termed folds or
splits).

@ We use each part in turn as a

[ 1
validation dataset and use the :-
[ ]

others as a training dataset.

@ We choose the hyperparameter ]

such that on average, the model

performing the best

Special case: when K = N, this will be leave-one-out (LOO).

K = 5: 5-fold cross validation

run 1

run 2

run 3

run 4

run 5




UCLA  Analyze Your Model: Underfit or Overfit?

Engineer Change.

< >
<«

Predictive Underfitting Overfitting

Error

Error on Test Data

Error on Training Data

Model Complexity

—>

Ideal Range
for Model Complexity



UCLA  Analyze Your Model: Underfit or Overfit?

Engineer Change.

e Another example on regression

Polynomial fit degree 1 Polynomial fit degree 4 Polynomial fit degree 20
Training error: 0.4 Training error: 0.14 Training error: 0.07
Generalization error: 0.42 Generalization error: 0.17 Generalization error: 2000

21.04

2054 N

200

19.54

19.04

000 025 050 015 1.00 000 025 05 075  1.00
X X
Underfit Overfit



https://en.wikipedia.org/wiki/Regression_analysis

UCLA Analyze Decision Tree: Too simple or too complex?

Engineer Change.

Examples on Decision Tree
Another two concepts:
Model Bias & Variance

e Demo: [Link]

Variance

Error Rate

Complexity


http://www.r2d3.us/visual-intro-to-machine-learning-part-2/

UCLA Part II i)
Engineer Change. a' r PG =)

Programming Prep Guide



UCLA “Doit local”: Python & Jupyter Notebook

Engineer Change.

Step 1: Install Anaconda (with Python 3.X and Jupyter Notebooks)

Step 2: Try out Python in command line and open Jupyter Notebooks
Step 3: Familiarize yourself with Python 3

Step 4: Use Jupyter Notebooks for coding and writing together

Step 5: Customize your Python environment and install Python packages

o Example packages: Numpy, Pandas, Matplotlib

Note: This slide is only intended for students who want to program on local desktop instead of Google Colab.



UCLA Where is your Python?

Engineer Change.

e Install Conda/Anaconda
o Conda:
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
o Anaconda: https://docs.anaconda.com/anaconda/install/mac-os/
e Install Jupyter Notebook from anaconda (this step may be skipped once Anaconda is
installed)
o Link: https://jupyter.org/install
o Command Line: conda install -c conda-forge notebook
e Check out Python and Jupyter notebook
o Command Line: python or ipython
o Version/Source: python --version or which python
o Open Jupyter Notebook: jupyter notebook (automatically into something URL like:
http://localhost:8888/tree)

Note: This slide is only intended for students who want to program on local desktop instead of Google Colab.


https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://docs.anaconda.com/anaconda/install/mac-os/
https://jupyter.org/install
http://localhost:8888/tree

UCLA  Create customized Python environment

Engineer Change.

e Checklist:
o Create a customized virtual environment
o Activate/Deactivate your environment
o Install packages for your virtual environment
e Helpful links:
o Managing conda environment:
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environ
ments.html



https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

UCLA A Program Notebook: Write and Code

Engineer Change.

e Apply both on Jupyter Notebook and Google Colab!

e Checklist:
o Identify Markdown cell and Code cell
o Learn how to use markdown and latex to input math formula
o Run Python code

e Markdown tutorial = It is a notebook interface!
o Checklist: paragraph, bold, italic, list, code (courier), math formula (in latex)
o Link: https://www.markdowntutorial.com/

e Latex — Itis for typing math symbols and equations!
o No need to install Tex or Mactex
o Cheatsheet: http://tug.ctan.org/info/undergradmath/undergradmath.pdf



https://www.markdowntutorial.com/
http://tug.ctan.org/info/undergradmath/undergradmath.pdf

UCLA Checklist: Python, Numpy, Pandas, Matplotlib

Engineer Change.

e Shown inthe demo
Python
o Datatypes and control flow
e Numpy
o Array and matrix
o Matrix operation
o Broadcasting
e Pandas
o Data load and export
o Dataframe operations
e Matplotlib
o Plot types, settings and output figure files
e Scikit-learn
o ML pipeline (data prep, model selection, train and development, evaluation)



UCLA Demo [Link]

Engineer Change.

e Google Colah: A starter guide
o Create and connect online codebook
o Run code and commands
o Save and output results
e Text cell
o Markdown and Latex
e Codecell

o Python
o  Numpy
o Pandas
o Matplotlib


https://colab.research.google.com/drive/1zlA7E45N0iUuxyV5dozQFfFOn6bUTPKG?usp=sharing

Samueli
UCLA Computer Science

Thank you!

Q&A



