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UCLA Roadmap

Engineer Change.

e Announcement
e Perceptron & Linear Models

e Optimization, MLE



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Jan. 22: Weekly Quiz 3 released on Gradescope.
e 11:59 pm PST, Jan. 24 (Sunday): Weekly quiz 3 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Jan. 24 to have the full 60-minute time
e Problem set 1 released on campuswire/CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
You do not need to submit code, only the results required by the problem set
Due on 11:59pm PST, Jan. 29 (Friday)



UCLA About Quiz 3

Engineer Change.

Quiz release date and time: Jan 22, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Jan 24, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 3 Quiz" on GradeScope.
Topics: Perceptron, Linear Models
Question Types
o True/false, multiple choices, and auto-graded short answers (fill blanks)
o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.



UCLA *One more quiz of K-NN

Engineer Change.

e True/False: The training error of K-NN will be zero when K =1, irrespective of the

dataset.



UCLA

Engineer Change.

Math Reminder: Normal vector and plane

e A normal vector is a vector perpendicular to another object, such as a surface or plane.

Credit: https://web.ma.utexas.edu/users/m408m/Display12-5-4.shtml

Let O(a, b, c) be a fixed point in the plane,
P(x, y, z) an arbitrary point in the plane, and
n = (A, B, C) the normal to the plane. If
b =(a, b, c), r=(x,y 2),
the vector
—
QP =r—-b =(x—a,y—-b,z—c)

lies in the plane, and is perpendicular to n.

Thus n - (r — b) = 0. In terms of coordinates, this
becomes

(A,B,C)-(x—a,y—b,z—c) =0,

where n = (A, B, C). In other words, we get the
point-normal equation

Ax—a)+By-b)+Cz—c) = 0.

for a plane.



https://web.ma.utexas.edu/users/m408m/Display12-5-4.shtml

UCLA  Math Reminder: Normal vector and plane

Engineer Change.

e A normal vector is a vector perpendicular to another object, such as a surface or plane.
As promised, we return the the question of finding the equation for a plane from the location of three points, say

Ox1, y1, 21), RGx2, y2, 22) 5 S(x3, y3, 23)

The fact that the cross-product a X b is perpendicular to both a and b makes it very useful when dealing with normals
to planes.

Let

b=(x,y1,21), r={(x,¥,22), S=(x3, 3, 23 )-

The vectors

— —
OR =r-b>b, 0S =s-b,

then lie in the plane. The normal to the plane is given by the
cross product n = (r — b) X (s — b). Once this normal has
been calculated, we can then use the point-normal form to
get the equation of the plane passing through Q, R, and S.




UCLA  Math Reminder: Normal vector and plane

Engineer Change.

e Demo Calculation Example



UCLA Perceptron: Overview

Engineer Change.

e Instance (feature vectors): & € RP
o Label: y € {—1,+1}

@ Model/Hypotheses:
H ={hlh:X = {~1,41}, h(x) = sign(3>L, wgzq +b)}.
@ Learning goal: y = h(x)

X 1‘ ®

X X X wlx+b=0

w, b are the parameters to
represent a linear function

» Learn wy,...,wp,b.
» Parameters: wq,...,wp,b.
» w: weights, b: bias

Iteratively solving one case at a time
e REPEAT
Pick a data point x,

T

°
e Compute a = w" x,, using the current w
°

If ay, > 0, do nothing. Else,
W < W+ YnTy

e UNTIL converged.




UCLA Perceptron: Convergence

Engineer Change.

e Iftraining data is not linearly separable, the algorithm does not converge.

e If the training data is linearly separable, the algorithm stops in a finite number of steps

(converges).

o Let {(®1,y1), -, (xn,yn)} be a sequence of training examples such
that ||x,|2 < R and label y, € {—1,+1}.

@ Suppose there exists a unit vector u € R? such that for some v > 0,
we have ynuTmn > o,

@ Then the Perceptron algorithm will make at most 5—22 mistakes on the
training sequence.




UCLA Perceptron: Update (Geometry)

Engineer Change.

Predict Update After

W4

new

(x, +1) (x, +1)




UCLA  perceptron: Connect to Neural Network

Engineer Change.

A Single Perceptron Multi-layer Neural Network

Inputs — f ———— .

I .

Activation
Function

wY
<«—— Hidden Layer —L Output Layer ——

Input
Layer

Question: Can a single perceptron classify XOR data? How about 2-layer perceptrons?



UCLA Logistic Regression: Overview

Engineer Change.

Probability of a single training sample (x,,y,)

hw p(Tn) = (b + wla,) if y,=1

p(yn|mna b, ’lU) = { —1— hw,b(wn) =1—- o‘(b -+ men) otherwise

Compact expression, exploring that y,, is either 1 or 0
P(Yn|Tn; b;w) = he p(2n)""[1 — h'w,b(wn)]l_yn

Log-likelihood of the whole training data D

H(w,b) = > {yn10g Puw,p(®n) + (1 — yn) 1og[1 — hap ()]}



UCLA Linear Models

Engineer Change.

e Compare: Decision Tree, Nearest Neighbors, Perceptron

Ground Truth:
Linear Boundary

Xz
0
|
Xz
0
|
—_

-2 -1 o 1 2 -2 -1 o 1 2
X Xy
Ground Truth: car e
Non-Linear Boundary o =
& -3 ° ' 2 & -3 o : 2
Xy X,
Fitted Model: Fitted Model:

Linear Model Trees




UCLA Decision Boundary: Quiz

Engineer Change.

Suppose you train a logistic classifier hy(x) = g(6y + €1x; + 0,x,). Suppose
6y = 6,0, = 0,0, = —1. Which of the following figures represents the decision boundary
found by your classifier?



UCLA Decision Boundary: Quiz

Engineer Change.

Suppose you train a logistic classifier hy(x) = g(0y + 01x; + 0,x;). Suppose
6y = 6,60, = 0,0, = —1. Which of the following figures represents the decision boundary
found by your classifier?




UCLA Unconstrained Optimization

Engineer Change.

e Convex Function and Convexity
e Closed-form solution
e Gradient Descent

e Newton’s methods



UCLA Gradient Descent

Engineer Change.

w
Start at a random point 1)

Repeat
Determine a descent direction
Choose a step size
Update

Until stopping criterion is satisfied

*

W™ - W2 Wi Wo w

Where Will We Converge?

fiw) Convex gw) Non-convex

W w W W w
Any local minimum is a global minimum  Multiple local minima may exist



UCLA Newton’s Method (Optional)

Engineer Change.

Definition:

0?L(B) ) L OL(B)

0posT

new __ pold
v == ( 95

Apply Newton’s methods on single variable to find minima:

f'(n)

From single variable to Multivariate Newton-Raphson Method




UCLA Newton’s Method: Steps (Optional)

Engineer Change.

Initialize z(?)

Calculate V f(x)

Calculate F'(x)

Initialize stepn = 0 and start loops

a. Calculate Vf(g;("))

b. Calculate F(x(”))

c. Calculate [F(:{:("))]_l

d. Update: ;-(+1) — () ()= 1o p ()
e. Update:n=n+1

5. Exit Loop

e



UCLA Newton’s Method: Example (Optional)

Engineer Change.

20 =[3,-1,0]
f(x1, e, 23) = (x1 + 109[;2)2 + 5(x1 — 333)2 + (22 — 251;3)4

Vf(z®) = {8f of 8f} = [16, —144, 22]

Newton’s Method Ox1’ Oz’ Oz
Example in one step: - O 0°f f T
Bgf 8.’16128902 396‘123113 12 20 —10
F(z©) = 8528@1 o 8525;3 — 120 22 —24
> Calculate Vf(z(™) o2 52 o2 f ~10 —24 48
> Calculate [F(w(n))]—l - —0.079 0.119  0.043
| F(zO™'=]0119 —0.079 —0.015
> Update: ..(n+1 |
. Update i(n n), 3 0.043 —0.015 0.023
pdate: =
2 = 2O [P Vi)




UCLA Maximum Likelihood Estimation

Engineer Change.

Definition: The maximum likelihood estimator (MLE) 8, is the value of 6
that maximizes L(0).

The log-likelihood function is defined by [(6) = log L(#). Its maximum
occurs at the same place as that of the likelihood function.

e Using logs simplifies mathemetical expressions (converts exponents to
products and products to sums)

@ Using logs helps with numerical stabilitity

The same is true of the likelihood function times any constant. Thus we
shall often drop constants in the likelihood function.



UCLA MLE: Logistic Regression

Engineer Change.

e Model

e Original Objective



UCLA

Engineer Change.

MLE: Logistic Regression

where

1
ho(z) = g(0"x) = 14 os’
1
g(z) = e
d 1
/ =
g(2) = dz 1+e*




UCLA MLE: Logistic Regression

Engineer Change.

Assuming that the m training examples were generated independently, we
can then write down the likelihood of the parameters as

Ply=1|z0) = he(2) L(O) = p(y]X;0)

P01ty = Ll — w1200
p(y | iT; 9) — (he(:E))y (1 — ho(aj))l_y i

@ 1—y(@

(ho(z®™)” " (1 — hy(2™))

I
s

1

o~
Il

As before, it will be easier to maximize the log likelihood:

((0) = logL(0)

= >y logh(z?) + (1 — y@) log(1 — h(z™))
1=1




UCLA Constrained Optimization

Engineer Change.

e Lagrange Multiplier

L(z,y,\) = f(z,y) — Ag(z,y)

maximize f(z,y) VeyrL(z,y,A) =0 { Z;y§§i7g = AVay9(2,9)
subject to: g(z,y) =0 .y , Ny
VIx) =D M Va(x) < Vf(x)—> MVg(x)=0
k=1 k=1

e Considering multiple constraints

M
L1y .- yBpgMyeonyAtg) =F (B1g00ey@n) Z)\kgk BN 5 woncoy D)

g1 (X) — gu (X) =0



UCLA Constrained Optimization

Engineer Change.

leVe| sets

g




UCLA Lagrange Multiplier

Engineer Change.

e Example:

flz,y) =z +y
Constraint : g(z,y) = 2° + y* = 1




UCLA  [agrange Multiplier: Connect to SVM *

Engineer Change.

O
\ O @ ®
\k o
X .
Original optimization problem: X X x | % } 0
m i n i m ize l‘A’ W - x w, b are the parameters to
W7b 2 ) represent a linear function
(w.xj + b) yi > 1, V)
Rewrite One Lagrange multiplier
constraints per example

Lagrangian:

L(w,a) = %W.W — > [(W.Xj + b) Y — 1]
Oéj 2 O, Vj



UCLA What’s next?

Engineer Change.

e In next week’s discussion, we will discuss:
o Logistic Regression (Continued)
o Naive Bayes, Linear Regression (Planned)



Samueli
UCLA Computer Science

Thank you!

Q&A



