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UCLA Happy Holidays!

Engineer Change.

NEW YEAR

HAPPY

% 2021 PRESIDENTS DAY

THE YEAR OF OX

No lecture next Monday (Feb 15)!



UCLA Announcements

Engineer Change.

5:00 pm PST, Feb 12 (Friday): Weekly Quiz 6 released on Gradescope.

11:59 pm PST, Feb 14 (Sunday): Weekly quiz 6 closed on Gradescope!
o Start the quiz before 11:00 pm Feb 14, Feb 14 to have the full 60-minute time

Problem set 1: Regrade request due today
Problem set 3: Problem set 1: Will be released later today, due Feb 26 11:59PM PST

Problem set 2 submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
o Due on TODAY 11:59pm PST, Feb 12 (Friday)

Late Submission of PS will NOT be accepted!




UCLA About Quiz 6

Engineer Change.

Quiz release date and time: Feb 12, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Feb 14, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 4 Quiz" on GradeScope.
Topics: Neural Nets, Learning Theory
Question Types
o True/false, multiple choices
o Some questions may include several subquestions.
e Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.
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https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e



https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e

UCLA Neural Networks: Backpropagation

Engineer Change.
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http://colah.github.io/posts/2015-08-Backprop/
http://colah.github.io/posts/2015-08-Backprop/

UCLA 2-Layer NN Example

Engineer Change.

Demo in class : Back propagation for a 2-layer network




UCLA

Engineer Change.

Backprop: Exercise

Input layer

Hidden layer

Output layer

In this question, let’s consider a simple two-layer neural network and manually do the forward
and backward pass. For simplicity, we assume our input data is two dimension. Then the model
architecture looks like the following. Notice that in the example we saw in class, the bias term
b was not explicit listed in the architecture diagram. Here we include the term b explicitly for
each layer in the diagram. Recall the formula for computing x(!) in the I-th layer from x1~) in
the (I — 1)-th layer is x0 = fO(WDx(-1) 4 b)), The activation function f) we choose is the

sigmoid function for all layers, i.e. f)(z) = Hexlm. The final loss function is % of the mean

squared error loss, ie. I(y,§) = 3|y — 9>
We initialize our weights as

w — [0.15 0.2

(2 — 1 _ @ _
0.25 0.3]' W =104,045], bY =[0.35035, b* =06



UCLA Backprop: Exercise

Engineer Change.

Forward Pass

1. When the input x©® = [0.05, 0.1], what will be the value of X in the hidden layer? (Show your work).
2. Based on the value xX¥) you computed, what will be the value of x in the output layer? (Show your work).
3. When the target value of this input is y = 0.01, based on the value x? you computed, what will be the loss? (Show your work).

Input layer Hidden layer Output layer

W) _ [0.15 0.2

@ —
0.25 0.3] » W =104,0:45),

b =[0.35,035], b® =06

input x(® = [0.05,0.1]



UCLA Backprop: Exercise

Engineer Change.

Back Propagation
1. Consider the loss [ of the same input xX® = [0.05, 0.1], what will be the update of W® and b® when we backprop, i.e. avi’lﬂ) : a:f”
2. Based on the result you computed in part 1, when we keep backproping, what will be the update of WD and b(l), ie. %, %

Input layer Hidden layer Output layer

W= 2 5 wo-tosom

b =[0.35,035], b? =06

input x(©) = [0.05,0.1]

target value of this input is y = 0.01




UCLA

Engineer Change.

Why understanding activation function?

e “Why do we have to write the backward pass when frameworks in the real world, such

as TensorFlow/PyTorch, compute them for you automatically?”

e Vanishing gradients on Sigmoids
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https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b



https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

UCLA

Engineer Change.

Why understanding backpropagation?

RelLUs

tanh

RelLU function
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UCLA  \Why understanding backpropagation?

Engineer Change.

e Examples of non-linear activation functions: Sigmoid, RelLU, leaky RelLU, tanh,
etc
e Properties we focus on:
o Differentiable
o Range: Whether saturated or not? (
o Whether zero-centered or not?
e Activation function family
o  Wiki: https://en.wikipedia.org/wiki/Activation function



https://en.wikipedia.org/wiki/Activation_function

UCLA Neural Networks: Online Demo

Engineer Change.

Learning rate Activation Regularization Regularization rate Problem type

e Let’s play with it: 5 g B . . , il
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https://playground.tensorflow.org/
https://playground.tensorflow.org/

Just For Reading

UCLA Story of Computing

Engineer Change.

~ Richisrich—



UCLA

er Change.

Matrix Multiplication is
Eating (the computing resource of) the World!



UCLA Single-thread Computing of X*W

Engineer Change.

Single-threaded Execution

.., 256.0] # Let's say we have 256 input values
oy Lelaal]] # Then we need to have 256 weight values
#FORlx05 1 H 200N 25640 1 | ==132389.6

Prev Single-threaded
Execution

1x0.1 = 0.1
e
0.1 + 2%0.1 = 0.3

—u D 256 *At
2

3238, 5+255%0 1= 3261 )
3264 + 256%0.1 = 3289.6




Just For Regding

UCLA Neural Networks: Computation Example

Engineer Change.

X3
Matrix Unit Systolic Array
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" Computing y =Wx
> 3x3 systolic array

W = 3x3 matrix
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accumulation



Just For

UCLA Neural Networks: Computation Example

Engineer Change.
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Just For f ing

UCLA Neural Networks: Computation Example

Engineer Change.
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Just For

UCLA Neural Networks: Computation Example

Engineer Change.
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Just For Regding

UCLA Neural Networks: Computation Example

Engineer Change.
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Just For

UCLA Neural Networks: Computation Example

Engineer Change.
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UCLA Neural Networks: Computation Example

Engineer Change.

Just For Reading

accumulation
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Just For Regding

UCLA Neural Networks: Computation Example

Engineer Change.
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UCLA

Engineer Change.

Neural Networks: Computation Example

Just For

inputs

weights
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UCLA  Neural Networks: Computation Example

Engineer Change.

Just For Reading

Shared Storage

Checkpoint
Storage

Training Data
Storage

WS Read
Training
Data

PS & Chief
Writes & Reads

Checkpoint Dat
eckpoint Data CPU

PS sends variables to WS
WS sends gradient updates to PS

\4

https://gcon.ai/system/files/presentation-slides/180411_gcon_presentation_-_2.pdf?fbclid=IwAR38KE
Swm8e2NAhkj5JFqaz0F0VtnCpFyBp1HHS5itsoSQIIYvkyYEwscOuY



https://qcon.ai/system/files/presentation-slides/180411_qcon_presentation_-_2.pdf?fbclid=IwAR38kESwm8e2NAhkj5JFqgz0F0VtnCpFyBp1HH5itsoSQllYvkyYEwsc9uY
https://qcon.ai/system/files/presentation-slides/180411_qcon_presentation_-_2.pdf?fbclid=IwAR38kESwm8e2NAhkj5JFqgz0F0VtnCpFyBp1HH5itsoSQllYvkyYEwsc9uY

UCLA Learning Theory

Engineer Change.

e Let Hbe any finite hypothesis space. With probability 1 -6 a hypothesis 7 — H that is
consistent with a training set of size m will have an error < ¢ on future examples if

m >

1
In(|H|) +HIn 5)
J | v
1. Expecting lower error 3 If we war‘1t. a hlgher confidence
increases sample complexity in the classifier we will produce,

(i.e more examples needed for sample complexity will be higher.

the guarantee)

1
€
|

2. If we have a larger hypothesis
space, then we will make learning
harder (i.e higher sample
complexity)

Credit: http://cs229.stanford.edu/summer2020/cs229-notes4.pdf


http://cs229.stanford.edu/summer2020/cs229-notes4.pdf

UCLA VC Dimension

Engineer Change.

e Given a hypothesis class H over instance space X, we then define its Vapnik
Chervonenkis dimension, written as VC(H), to be the size of the largest finite subset of X
that is shattered by H.

e Ingeneral, the VC dimension of an n-dimensional linear function is n+1

This term will decrease

’ This term may decrease

v

J VC(H) ( VC(H) + 1) +1In}

errp(h) <errg(h) +

m

e Sample size for infinite H

o o (3 5 v (2)



UCLA VC Dimension of Half Space

Engineer Change.

e How to determine the set H of linear classifiers in two dimension has a VC(H)=3?

X b P X
X o) X O
X, X X, X X
X X O o)
O
X
X S| Xy X 2 X
y O O ;
X @) X O X1
X X X X
X X o o) : : :
\ VC dimension of H here is 3
even though there may be sets

of size 3 that it cannot shatter.



UCLA VC Dimension of Rectangles

Engineer Change.

e What is the VC Dimension of Axis-aligned rectangles?

(3]
o (3]
® O O
@) @) (3]
o 0 @1 - 8
O O ®
O @) |
(3]
O 1 ® ®|2,I® ® 4

Credit: https://www.cs.princeton.edu/courses/archive/springl4/cos511/scribe notes/0220.pdf


https://www.cs.princeton.edu/courses/archive/spring14/cos511/scribe_notes/0220.pdf

Engineer Change. Ke r n e I.S
e Motivation: Transformed feature space . A | =
X 7)/ ) )\\x ﬁ X L x x
e Basicidea: Define K, called kernel, such that: . i\\ e <L *\x ) .
x \ > -
which is often as a similarity measure. i (b)
e Benefit:

o Efficiency: is often more efficient to compute than and the dot product.

o Flexibility: can be chosen arbitrarily so long as the existence of is guaranteed

(Mercer’s condition).

Credit: https://cs.nvu.edu/~mohri/icml2011-tutorial/tutorial-icml2011-1.pdf



https://cs.nyu.edu/~mohri/icml2011-tutorial/tutorial-icml2011-1.pdf

UCLA Polynomial Kernels

Engineer Change.

| Definition:
Vez,y € RN, K(z,y) = (x-y+c)®, c>0.
® Example:for N=2and d=2,

K(z,y) = (191 + T2y2 + ¢)°
EREE S
2 2

Y2
_ V21139 . V2112
V2czx vV 2cy1
V2cxo VvV 2¢ Yo
c




UCLA Kernels: XOR Example

er Change.

X,, \/5:;:1:1:2
-1, 1) (L)  OL+v2,-v2,—V2,1) | (1,1, +v2,+v2,+V?2,1)
O O @ O
P)(I >\/§.’E1
@ @ @) O
(-1,-1) (I,-1) (1,1,-v2,-v2,+v2,1) | (1,1,-v2,+v2,-v2,1)
Linearly non-separable Linearly separable by

L1X2 — 0.



UCLA Other Kernel Options

Engineer Change.

Gaussian kernels: .
Also known as “Radial

K(z,y) = exp _M o 0. Basis Function Kernel”
’ 202 ’
Sigmoid Kernels:

K(z,y) = tanh(a(z -y) +b), a,b> 0.
Note: The RBF/Gaussian kernel as a projection into infinite dimensions, commonly used in kernel SVM.
K(z,2') = exp(—(az — zc’)z)

k(o \k( 0\
= exp(—a?) exp(-2”) Lo “H

~~

exp(2zz’) Taylor Expansion

Credit: http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf


http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf

UCLA Programming Guide for PS3: PyTorch

Engineer Change.

e Important Concept Checklist
o Tensors, Variable, Module
Autograd
Creating neural nets with provided modules: torch.nn
Training pipeline (loss, optimizer, etc): torch.optim

O O O O O

Util tools: Dataset O
(most important) Search on official document or google
e A Not-so-short Tutorial: PyTO rch
https://web.cs.ucdavis.edu/~yjlee/teaching/ecs289¢g-winter2018/
Pytorch Tutorial.pdf = Details and demo code in another slides
e Youtube:
https://www.youtube.com/playlist?list=PLIMkM4tgfinJ3I-dbh09IT
w7gNtyb6o 2m



https://web.cs.ucdavis.edu/~yjlee/teaching/ecs289g-winter2018/Pytorch_Tutorial.pdf
https://web.cs.ucdavis.edu/~yjlee/teaching/ecs289g-winter2018/Pytorch_Tutorial.pdf
https://www.youtube.com/playlist?list=PLlMkM4tgfjnJ3I-dbhO9JTw7gNty6o_2m
https://www.youtube.com/playlist?list=PLlMkM4tgfjnJ3I-dbhO9JTw7gNty6o_2m

UCLA PyTorch Project Pipeline

Engineer Change.

{ Data Preparation ]

Y

{ Model Design ]

Y

{ Training Strategy ]




UCLA UseP

Engineer Change.

yTorch to check your gradient calculation

Input layer

Hidden layer

Output layer

Colab Link:

class Net(nn.Module):
def _ init_ (self):
super (Net, self). init ()

def

def

self.1l1
self.12 =

self.ll.weight.data =
self.12.weight.data =
self.ll.bias.data =
self.l2.bias.data =

nn.Linear(2, 2, bias=True)
nn.Linear(2, 1, bias=True)

torch.Tensor([[0.15, 0.2], [0.25, 0.3]])
torch.Tensor([[0.4, 0.45]])
torch.Tensor([0.35, 0.35])
torch.Tensor([0.6])

forward(self, x0):

z1
x1
z2
x2

print("zl:
print("x1:
print("z2
print("x2:

self.11(x0)
torch.sigmoid(zl)
self.12(x1)
torch.sigmoid(z2)
", z1)
¢ X1)
2%y 22)
, X2)

return x2

loss(self, x2, y):

1

nn.MSELoss( )

return 0.5 * 1(x2, y)

x = torch.Tensor([0.05, 0.1])
y = torch.Tensor([0.01])
net = Net()

y_hat = net(x)

loss = net.loss(y_hat, y)
print(loss)
loss.backward()

z1l: tensor([0.3775, 0.3925], grad_ fn=<AddBackward0>)
x1: tensor([0.5933, 0.5969], grad fn=<SigmoidBackward>)
z2: tensor([1.1059], grad fn=<AddBackward0>)

x2: tensor([0.7514], grad fn=<SigmoidBackward>)
tensor(0.2748, grad_fn=<MulBackward0>)

print("d[W1l]", list(net.ll.parameters())[0].grad)
print("d[bl]", list(net.ll.parameters())[1l].grad)
print("d[W2]", list(net.l2.parameters())[0].grad)
print("d[b2]", list(net.l2.parameters())[1l].grad)

d[Wl] tensor([[0.0007, 0.0013],
[0.0007, 0.0015]])

d[bl] tensor([0.0134, 0.0150])

d[W2] tensor([[0.0822, 0.0827]])

d[b2] tensor([0.1385])

https://colab.research.google.com/drive/1FHo mkFaTatKepBw5VRRVUSBJzoMt U8?usp=sharin


https://colab.research.google.com/drive/1FHo_mkFaTatKgpBw5VRRVUSBJzoMt_U8?usp=sharing

Samueli
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Thank you!

Q&A



UCLA Whiteboard

Engineer Change.

e Content



