
Junheng Hao
Friday, 02/12/2021

CS M146 Discussion: Week 6 (Add-on)
PyTorch Introduction and Tutorial 



It’s a Python-based scientific computing package 
A replacement for NumPy to use the power of GPUs

A deep learning research platform that provides maximum flexibility and speed



Three Levels of Abstraction
● Tensor: Imperative ndarray but runs on GPU

● Variable: Node in a computational graph; stores data and gradient

● Module: A neural network layer; may store state or learnable weights

PyTorch

Credit: 
https://web.cs.ucdavis.edu/~yjlee/teaching/ecs289g-winter2018/Pytorch_Tutorial.pdf

https://web.cs.ucdavis.edu/~yjlee/teaching/ecs289g-winter2018/Pytorch_Tutorial.pdf


PyTorch
● PyTorch Tensors are just like numpy arrays, 

but they can run on GPU. 

● No built-in notion of computational graph, or 

gradients, or deep learning. 

● Here we fit a two-layer net using PyTorch 

Tensors.

4



PyTorch

Create random tensors for data and 

weights

5



PyTorch

Forward pass: compute predictions 

and loss

6



PyTorch

Backward pass: manually compute 

gradients

7



PyTorch

Gradient descent step on weights

8



PyTorch

To run on GPU, just cast tensors to a 

cuda datatype! (Optional)

9



PyTorch: Autograd
A PyTorch Variable is a node in 
a computational graph

 is a Tensor

 is a Variable of 
gradients
(same shape as x.data)

is a Tensor of 
gradients



PyTorch: Autograd

The autograd package provides automatic 
differentiation for all operations on Tensors.

 is the central class of the 
package. It wraps a Tensor, and supports nearly 
all of operations defined on it.

Once you finish your computation you can call 
 and have all the gradients 

computed automatically.



Example: Computational Graph in PyTorch



Example: Computational Graph in PyTorch



Example: Computational Graph in PyTorch



Example: Computational Graph in PyTorch



Example: Computational Graph in PyTorch



PyTorch: Autograd

PyTorch Tensors and Variables
Have the same API!

Variables remember how they 
were created (for backprop)



PyTorch: Autograd

We will not want gradients 
(of loss) with respect to 
data

Do want gradients with 
respect to weights



PyTorch: Autograd

Forward pass looks exactly the 
same as the Tensor version, but 
everything is a Variable now



PyTorch: Autograd

Compute gradient of loss with 
respect to w1 and w2 
(zero out grads first)



PyTorch: Autograd

Make gradient step on weights

21



PyTorch: New Autograd Functions

Define your own autograd 
functions by writing forward 
and backward for Tensors



PyTorch: New Autograd Functions

Can use our new autograd 
function in the forward pass



PyTorch: nn

Higher-level wrapper for 

working with neural nets

Similar to Keras and friends …

but only one, and it’s good =)



PyTorch: nn

Define our model as a 
sequence of layers

nn also defines common loss 
functions



PyTorch: nn

Forward pass: 

feed data to model, and 

prediction to loss function



PyTorch: nn

Backward pass: 

compute all gradients



PyTorch: nn

Make gradient step on each 

model parameter



PyTorch: optim

Use an optimizer for different 

update rules



PyTorch: optim

Update all the parameters 

after computing gradients

30



PyTorch: nn
A Pytorch Module is a neural net 
layer; it inputs and outputs 
Variables

Modules can contain weights (as 
Variables) or other Modules

You can define your own Modules 
using autograd!

31



PyTorch: nn

Define new modules

Define our whole model as a single 
module

32



PyTorch: nn

Define new modules

Initializer sets up two children 
(Modules can contain modules)

33



PyTorch: nn
Define new modules

Define forward pass using 
child modules and autograd 
ops on Variables

No need to define backward - 
autograd will handle it

34



PyTorch: nn

Define new modules

Construct and train an instance of 
our model

35



PyTorch: DataLoaders

A DataLoader wraps a Dataset and 
provides mini-batching, shuffling, 
multithreading, for you

When you need to load custom 
data, just write your own Dataset 
class



PyTorch: DataLoaders



PyTorch: Visdom

Somewhat similar to 
TensorBoard: add logging to 
your code, then visualized 
in a browser

https://github.com/facebookresearch/visdom

https://github.com/facebookresearch/visdom


Useful Resources in PS3
● Torch tensor and Numpy: 

https://pytorch.org/tutorials/beginner/former_torchies/tensor_tutorial.html 
● DataLoader: https://pytorch.org/docs/stable/data.html 
● Linear layer: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html 
● Sigmoid layer: 

https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html#torch.nn.Sigmoid 
● Cross Entropy Loss: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html 
● Optimizer: https://pytorch.org/docs/stable/optim.html 

Always check https://pytorch.org/docs/1.7.1/ official document for accurate up-to-date details!

Note: In PS3, you don’t need to implement tensors on GPU (even if you do have access to GPU computing 
resources). 

https://pytorch.org/tutorials/beginner/former_torchies/tensor_tutorial.html
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html#torch.nn.Sigmoid
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/1.7.1/


Thank you!
Q & A


