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e K-Means

e Gaussian Mixture Model



UCLA Announcements

Engineer Change.

e 5:00 pm PST, Mar 5 (Friday): Weekly Quiz 9 released on Gradescope.

e 11:59 pm PST, Mar 7 (Sunday): Weekly Quiz 9 closed on Gradescope!
o Start the quiz before 11:00 pm PST, Mar 7 to have the full 60-minute time
e Grading update: Lowest two quiz scores are dropped. The rest 7 quizzes are counted
into final grading.

e Problem set 4 released on CCLE, submission on Gradescope.
o Please assign pages of your submission with corresponding problem set outline
items on GradeScope.
You need to submit code and the results required by the problem set
o Due on next Friday, 11:59pm PST, Mar 12 (Friday)

Late Submission of PS will NOT be accepted!




UCLA About Quiz 9

Engineer Change.

Quiz release date and time: Mar 5, 2021 (Friday) 05:00 PM PST
Quiz due/close date and time: Mar 7, 2021 (Sunday) 11:59 PM PST
You will have up to 60 minutes to take this exam. — Start before 11:00 PM Sunday
You can find the exam entry named "Week 9 Quiz" on GradeScope.
Topics: Naive Bayes, Clustering
Question Types
o True/false, multiple choices
o Some questions may include several subquestions.
Some light calculations are expected. Some scratch paper and one scientific calculator
(physical or online) are recommended for preparation.
Note: This is the last quiz in this quarter. Highest 7 quiz scores are counted for final
grading.

Prof. Sankararaman’s post on updated quiz grading:

https://campuswire.com/c/GB5E561C3/feed/438



https://campuswire.com/c/GB5E561C3/feed/438

UCLA Updates: Final Exam

Engineer Change.

Open book and open notes, on GradeScope: “quiz”-like exam

e Start attempting the exam from 8:00 am PST on March 15; Submit your exam before
8:00am PST March 16 (No extensions). = 24h time window
Exam duration: 3 hours (time limit after start the exam)

Type: True/false and multiple choice questions (free text boxes are given for
justification)

e The instructors will be available to provide clarifications on CampusWire (visible for
everyone) from 8:00am-11:00am on March 15. Later questions on Campuswire may not
be answered.

e Some calculations are expected.

MUST READ: Official post about final exam on Campuswire:
https://campuswire.com/c/GB5E561C3/feed/437



https://campuswire.com/c/GB5E561C3/feed/437

UCLA Naive Bayes: Model Summary

Engineer Change.
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e Defines ajoint distribution

e Learning problem formulation
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UCLA Naive Bayes: Derivation

Engineer Change.

A short derivation of the maximum likelihood estimation

To maximize
Z Znk 1Og ack

n:yn=c,k

We use the Lagrangian multiplier

Z Znk log eck A (Z 0014: - 1)
k

n:yn=c,k
Taking derivatives with respect to 6. and then find the stationary point

(Z znk)_*_/\ 0—)9&,——-— Zznk

Ok

n:Yn=c n Yn=C

Apply constraint Ek 0. = 1, plug in expression above for 6., solve for A,
and plug back into expression for 6.x:

9 — En:yn=c Znk
Ck prm—
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UCLA Naive Bayes: Example

Engineer Change.

e #docsin Class 1: 25, #docs in Class 2: 75

Index Word CountinClass1 | Countin Class 2
I 1 9
2 like 2 1
3 machine 3 9
4 learning 4 1




UCLA Naive Bayes: Learning (Step 1)

Engineer Change.

e How to obtain the parameters in Naive Bayes classifier? (shown in class)

Index Word #inCl1 | #inC2
1 I 1 9
2 like 2 1
3 machine 3 9
4 learning 4 1




UCLA Naive Bayes: Predicting

Engineer Change.

e Predicting new document: {I:3, like:1, machine:5, learning:1} (shown in class)

Index Word #inCl1 | #inC2
1 I 1 9
2 like 2 1
3 machine 3 9
4 learning 4 1

e One further question: How to predict new document: {I:3, like:1, machine:5, learning:1,
love:2} = Label Smoothing



UCLA Naive Bayes: Summary, Pros and Cons

Engineer Change.

e Alinear classifier (same as logistic regression)
e Generative model, modeling joint distribution (probabilities) — What is the model
assumption?
e Pros:
o Fast and simple compared to other complicated algorithms, easy training
o Works well with high-dimension data such as text classification
e C(Cons:
o Strong assumptions (feature independency)
o Not fit to regression
o Smoothing is somewhat required for generalization



UCLA Generative vs Discriminative Models

Engineer Change.

e Training classifiers involve estimating f: X = Y, or
P(Y[X)

e Generative classifiers = “distribution”
o Assume some functional form for P(Y), P(X]Y)
o Estimate parameters of P(X|Y), P(Y) directly from
training data
Use Bayes rule to calculate P(Y|X)
o Actually learn the underlying structure of the data

e Discriminative Classifiers = “boundary”
o Assume some functional form for P(Y|X)
o Estimate parameters of P(Y|X) directly from
training data.
o Learn the mappings directly from the points to the
classes

e Generative models

o Naive Bayes
o HMM

e Discriminative models
o Logistic Regression

o Neural Network / Perceptron
o SVM

Q: With the aim of classification
only, which type of models may less
expensive?

https://stats.stackexchange.com/questions/
12421 /generative-vs-discriminative



https://stats.stackexchange.com/questions/12421/generative-vs-discriminative
https://stats.stackexchange.com/questions/12421/generative-vs-discriminative

UCLA Naive Bayes vs Logistic Regression

Engineer Change.

e Compare the learning and prediction procedure on Naive Bayes and Logistic
Regression in spam classification example



UCLA

Engineer Change.

MLE vs MAP

From Bayes rule:

Comparing MAP and MLE: [Link]

Oy rE = arg max log P(X|6)
0
= argmaxlo P(z;|0
g gl:[ (2:/6)

= argmax Y log P(z;|6
g Z g P(zi|0)

Likelihood Prior

How probable is the evidence How probable was our hypothesis

given that our hypothesis is true? before observing the evidence?
P(e | H) P(H)
P(H | e)=
P(e)
Posterior Marginal
How probable is our hypothesis How probable is the new evidence
given the observed evidence? under all possible hypotheses?
(Not directly computable) P(e) = ¥ Ple | H) P(H)

Orap = arg max P(X|6)P(6)
0
= arg max log P(X|0) + log P(6)
0
= arg max log H P(z;|0) + log P(6)
8 i

= arg max Z log P(z;|0) + log P(6)
4 i



https://wiseodd.github.io/techblog/2017/01/01/mle-vs-map/

UCLA Clustering

Engineer Change.

e Clustering: Input / Output / Goal of clustering analysis
o Large amount of unlabeled data in real life

e Supervised learning v.s. unsupervised learning
e Unsupervised learning cases: Clustering and dimension reduction

e Clustering algorithm examples in this course:
o K-means
o Gaussian Mixture models

e Dimension reduction algorithm examples in this course:
o PCA



UCLA supervised learning / Unsupervised learning

Engineer Change.
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UCLA

Engineer Change.

Applications of ML Categories

Personalized marketing

Recommendation engines

Insurance / credit underwriting
decisions

Fraud detection

Spam filtering

Demand sensing

Predictive maintenance

Sales performance prediction

People analytics

Customer grouping or
clustering, e.g. discovering
groups of similar visitors to a
website or discovering that
a group of patients respond to
the same treatment

Anomaly detection or finding
outliers in the data for better
fraud detection or security
incident identification

Product affinity/association
rule engine, e.g. discovering
which two products sell
best together

Supervised learning Unsupervised learning Semi-supervised

Used in applications where
labeled data is scarce/
expensive
Speech analytics
Image classification
Web content classification

Medical predictions

Protein sequence classification

Other “learning”: Self-supervised learning, reinforcement learning




UCLA K-means

Engineer Change.

e Demol:
http://stanford.edu/class/eel103/visualizations/kmeans/kmeans.html

e Demo 2:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/



http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

UCLA

Engineer Change.

K-means: Steps

The initial data set

K=2
 —

Arbitrarily
partition
objects into
k groups

Partition objects into k nonempty

subsets
Repeat

= Compute centroid (i.e., mean
point) for each partition

= Assign each object to the
cluster of its nearest centroid

Until no change

_

Update the
cluster
centroids

-

Update the
cluster
centroids




UCLA K-means

Engineer Change.

e Distortion measure

N K
T({rne}s {ek}) = DD rkll@n — i3
n=1 k=1
e Key idea of K-means algorithms:
o Step 1: Partition into k non-empty subsets (select K points as initial centroids)
o Step 2: Iteration: Update mean point and assign object to cluster again
o Step 3: Stop when converge
e Partition-based clustering methods

e Can be considered as a special case of Gaussian Mixture Model (GMM)



UCLA K-means

Engineer Change.

e QI1: Will K-means converge?
e (Q2: Will different initialization of K-means generate different clustering
results?



UCLA K-means

Engineer Change.

e QI1: Will K-means converge?

e Al:Yes. k
J=2 > dzi¢)’
J=1C(i)=j
e Q2: Will different initialization of K-means generate different clustering
results?

e A2:Yes. Initialization matters!



UCLA K-means: Discussion

Engineer Change.

Efficiency: O(tkn) normally k,t are much smaller
than n = efficient
Can terminate at a local optimum b e £
Need to specify k (or take time to find best k) ;
Sensitive to noisy data and outliers = K-medoids
Different sizes and variances
Not suitable to discover clusters with non-convex
shapes
Many variants of K-means:

o K-means++, Genetics K-means, etc.

2 4 0 1 2 3 4 5 &

2 4 0 1 2 3 4 5 &




UCLA *Hierarchical Clustering

e Method

o Divisive (Top-down)

©  Agglomerative (Bottom-up) Hierarchical Clustering

e Distance metrics
o Single linkage

Complete linkage Agglomerative | Divisive |

Average linkage

Centroid fﬁtw
Medoid |
o TPT L[] ﬁq '

L. l—lﬂ

o O O O




UCLA *Hierarchical Clustering

Engineer Change.

e Single Linkage e Complete Linkage e Average Linkage

‘ % Bix%.)
L(r,s)=mm(D(x,,,x,)) L(r,s) =max(D(x,;, X)) nh S5 3

L(r,s)= l




UCLA Gaussian Mixture Model

Engineer Change.

Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points

stay close to their cluster centers
How can we model p(x) to reflect this?

0.5




UCLA Gaussian Mixture Model

Intuition

e We can model each region with
a distinct distribution

e Common to use Gaussians, i.e.,

e Gaussian mixture models
(GMMs) or mixture of
Gaussians (MoGs).

e We don't know cluster
assignments (label) or
parameters of Gaussians or
mixture components

05¢




UCLA Gaussian Mixture Model

Engineer Change.

Gaussian mixture models: formal definition
A Gaussian mixture model has the following density function for &

K
p(@) = ) wiN(x|px, =)
k=1

® K: the number of Gaussians — they are called (mixture) components
@ pi and X mean and covariance matrix of the k-th component

@ wy: mixture weights — they represent how much each component
contributes to the final distribution. It satisfies two properties:

Vk, wp>0, and Zwkzl
k

The properties ensure p(x) is a properly normalized probability
density function.



UCLA Gaussian Mixture Model

GMMs: example

The conditional distribution between 2 and z

g (representing color) are

os| ‘gﬁ p(x|z =red) = N(x|p1, 1)

J¥ Pz = blue) = N(@|p2, o)
—e—s p(x|z = green) =

The marginal distribution is thus

p(x) = p(red) N (z|p1, 1) + p(blue) N (x|p2, X2)
+ p(green)N (x|p3, X3)




UCLA

ULLA  GMM: Incomplete Data and EM algorithm

Parameter estimation for GMMs: Incomplete data
GMM Parameters

0= {wk) 12778 2:k}f;l

Incomplete Data

Our data contains observed and unobserved random variables, and hence
is incomplete

e Observed: D = {x,}
o Unobserved (hidden): {z,}

Goal Obtain the maximum likelihood estimate of 8:

6 = arg max £(0) = arg max log P(D) = arg maxz log p(x,|0)

= arg max Z log Z P(Tn, 2,|0)
n

Zn

The objective function £(0) is called the incomplete log-likelihood.

Typical EM iterations

1.

2.

3.

Initialize B8 with some values

(random or otherwise)

Repeat

a. E=-Step: Compute ynk using
the current 6

b. M-Step: Update B using the
ynk we just computed

Until Convergence



UCLA

Engineer Change.

EM Algorithms: Coin example (only M-step)

ad Maximum likelihood

HTTTHHTHTH
HHHHTHHHHH
HTHHHHHTHH
HTHTTTHHTT

THHHTHHHTH

o

5 sets, 10 tosses per set

00000

5H,5T
9H,1T }=2516=03o
8H,2T "

TP T
7H,3T

24H,6T 9H, 11T




UCLA EM Algorithms: Coin example (EM)

Engineer Change.

E-step

HTTTHHTHTH 0_45X° 0_55X° ~22H,22T ~28H,28T
HHHHTHHHHH
HTHHHHHTHH 0.80x° 0_20)(0 =72H,08T =1.8H,02T
HTHTTTHHTT
THHHTHHHTH 0_73x° 0.27 x o ~59H,15T ~21H,05T
j ° o.ssxc ~1.4H,21T ~26H,39T
c °'35XQ ~45H,1.9T ~25H,1.1T
~213H,86T =~11.7H,84T
(1) 21.3
% ~273+86 071
A= 1.7 _
5 ~11.7+84




UCLA GMM: E-Step

Engineer Change.

E-step: Soft cluster assignments

We define v,,i. as p(z, = k|zn,, 0)
@ This is the posterior distribution of z,, given x,, and @
@ Recall that in complete data setting -y, was binary

@ Now it's a “soft” assignment of x,, to k-th component, with x,,
assigned to each component with some probability

Given 0 = {wk, pk, Zk}iil, we can compute Y,x using Bayes theorem:

Yk = P(2n = klzy,)
. p(wnlzn = k)p(zn = k)
N p(zn)
p(xn|2n, = k)p(2, = k) - N(wnlll‘ka k)W

K p@alzm =)z = k) K N(@n| ik, Sk )wk



UCLA

Engineer Change.

GMM: M-Step

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:
Z logp(mna zn) = Z Z Tnk log Wk + Z {Z Tnk logN(mnI”k’ Ek)}
n kK n k n

Previously v, was binary, but now we define y,x = p(z, = k|x,) (E-step)

We get the same simple expression for the MLE as before!

Wk — = — k — kI
A T 2 ke

1
> kZ’Ynk(mn_I-"k)(wn_Mk
n /M n

Y =

Intuition: Each point now contributes some fractional component to each
of the parameters, with weights determined by 7,




UCLA  GMM: Example (M-Step calculation)

Engineer Change.

Consider clustering ID data with a mixture of 2 gaussian. You’re given the 1-D data points x
=[1 2 20 40]. Suppose the E step is the following matrix :
[ 0.5 0.5
0.2 0.8
o 1
1 O ]
- What’s the mixing weights after M-step?
- What’s the new values of means after M-step?



UCLA GMM: Cheatsheet

Engineer Change.

Expectation (E) Step:

Calculate Vi, k

A= Q?kf\/‘(mi | fx, Ok)
it OiN (i | 4, 85)

where 4. is the probability that z; is generated by component Cy. Thus, 4. = p(Ci|z:, &, i, &)-

Maximization (M) Step:

Using the ¥;;. calculated in the expectation step, calculate the following in that order Yk :

N
5y e
ok = ; N
. 25\11 Yik T
= N7
E.’—l Yik
Y A — i)

B 2

.
i~
B

.&'ﬁ:



UCLA GMM: Questions

Engineer Change.

e How does GMM relate to K-means? What are the similarities and differences?
e Will the GMM optimization process converge? (connected to K-means)



UCLA General EM Algorithms

Engineer Change.

e The EM algorithm is used to find (local) maximum likelihood parameters of a statistical
model in cases where the equations cannot be solved directly.

e Typically these models involve latent variables in addition to unknown parameters and
known data observations.

Example applied cases: K-Means, GMM
Reading: http://ai.stanford.edu/~chuongdo/papers/em tutorial.pdf



http://ai.stanford.edu/~chuongdo/papers/em_tutorial.pdf

Samueli
UCLA Computer Science

Thank you!

Q&A
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Evaluation of Instruction 5

E COMMENT

Reminder: You have until Saturday, March 13 8:00 AM PST to complete
confidential evaluations for CSM146 and Dis 1C (Junheng).




