

Bio-JOIE: Joint Representation Learning of Biological Knowledge Bases

Presenter: Junheng Hao

University of California, Los Angeles

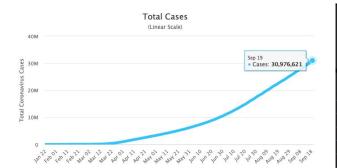
- Background: Cross-domain Biological Knowledge Graphs
- Bio-JOIE Modeling
- Experimental Results & Case Study
- Conclusion & Future Work

Background: Cross-domain Biological Knowledge Graphs

- Bio-JOIE Modeling
- Experimental Results & Case Study
- Conclusion & Future Work

Fight of COVID-19

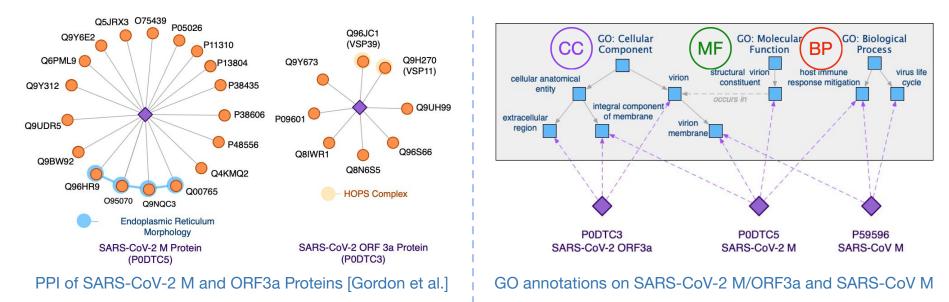
• The outbreak of COVID-19 has infected over 21 millions of people and caused high death tolls since the end of 2019, as worldwide social and economic disruption.



Data source: COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU), updated as 11pm (PST), 08/16/2020. Website: <u>https://coronavirus.jhu.edu/map.htm</u>

SARS-CoV-2 Knowledge Graph

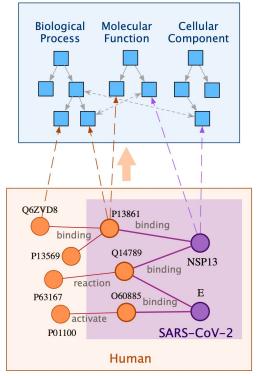
- Tremendous efforts have been made to discover the infection mechanism of its causative agent, named SARS-CoV-2, from multiple perspectives.
- Knowledge about SARS-CoV-2: (1) Protein-protein interactions (PPI) between viral proteins and human co-host proteins; (2) Gene ontology (GO) annotations on viral proteins.



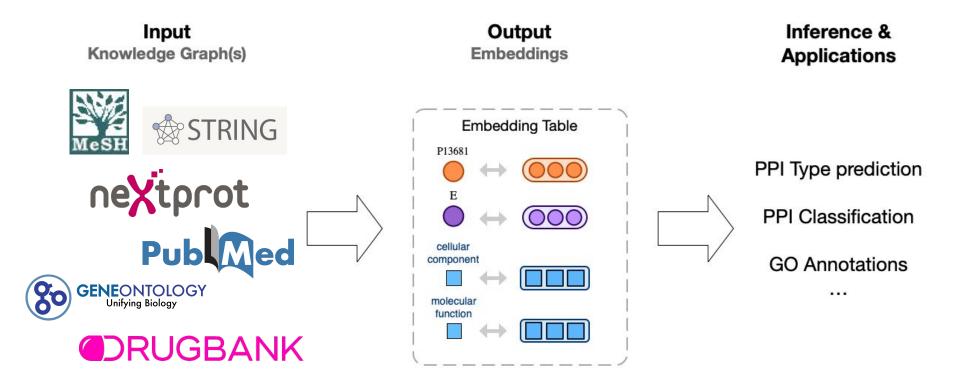
Protein Interaction Domain

Cross-domain Bio-KG

- Not limited to SARS-CoV-2 KB above, many biological KBs, often stored as knowledge graphs (KGs), consist of biological entities of various kinds, together with their properties and relations.
- As essential sources of knowledge, these KBs can be categorized in different domains.
 - \circ Gene Ontology Consortium \rightarrow gene function annotation
 - STRING → Knowledge accumulated from functional proteomic analysis
 - \circ DrugBank \rightarrow cheminformatics resource for drug targets
- Domain-specific knowledge is often scarce and costly to collect.

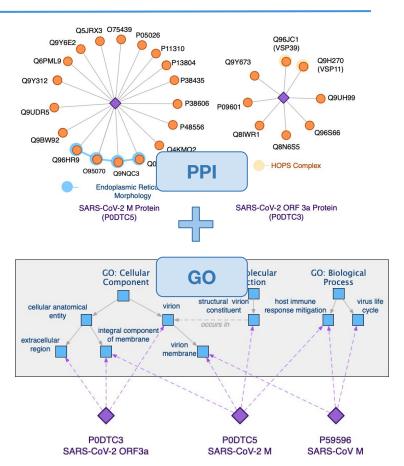


Learning Embeddings for Bio-KG



Motivation

- Relying on the KG from a single domain presents the risk of learning from limited and scarce information.
- The missing knowledge in one domain can be transferred from other domains with complementary knowledge, and thus provide more comprehensive representations of the biological entities.
- We aim at designing a plausible method to support the fusion and transfer of knowledge across multiple biological domains.



Outline

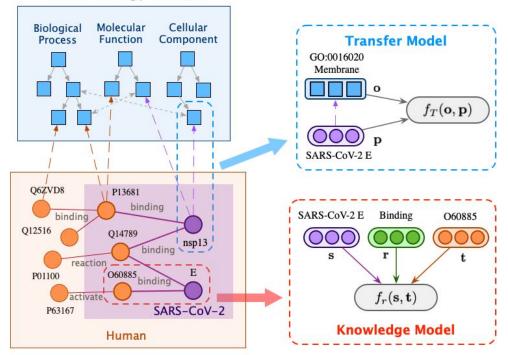
Background: Cross-domain Biological Knowledge Graphs

Bio-JOIE Modeling

- Experimental Results & Case Study
- Conclusion & Future Work

Model Overview: Bio-JOIE

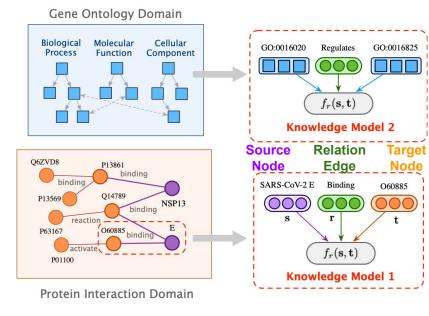
Joint Embedding Learning for multiple domains of **Bio**logical Knowledge Bases



Gene Ontology Domain

Protein Interaction Domain

Bio-JOIE: Knowledge Model



Knowledge Triple \rightarrow {Source, Relation, Target}

- Goal: To embed the relational facts / structures in the each domain of the Bio-KG
- Three representative score functions: TransE, DistMult (selected), and HolE

 $egin{aligned} & f_r^{ ext{Trans}}(\mathbf{s},\mathbf{t}) = ||\mathbf{s}+\mathbf{r}-\mathbf{t}||_2 \ & f_r^{ ext{Mult}}(\mathbf{s},\mathbf{t}) = -(\mathbf{s}\circ\mathbf{t})\cdot\mathbf{r} \ & f_r^{ ext{HolE}}(\mathbf{s},\mathbf{t}) = -(\mathbf{s}\star\mathbf{t})\cdot\mathbf{r} \end{aligned}$

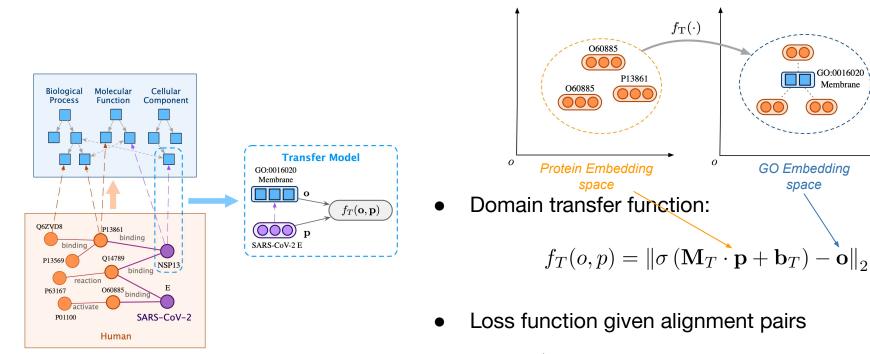
• Loss: Triple-wise margin ranking loss with negative sampling

$$\mathcal{L}_{K}^{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{(s,r,t)\in\mathcal{G}} \max\left\{ f_{r}(s,t) + \gamma^{\mathcal{G}} - f_{r}(s',t') \right\} 0$$
Positive Negative

triples

triples

Bio-JOIE: Transfer Model



$$\mathcal{L}_{T_{1}} = \frac{1}{|\mathcal{A}|} \sum_{(o,p)\in\mathcal{A}} \max\left\{ f_{T_{1}}(o,p) + \gamma^{\mathcal{A}} - f_{T_{1}}(o',p'), 0 \right\}$$
Positive
A positive

Domain transfer function:

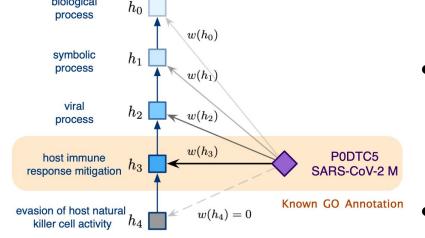
$$f_T(o, p) = \left\| \sigma \left(\mathbf{M}_T \cdot \mathbf{p} + \mathbf{b}_T \right) - \mathbf{o} \right\|_2$$

- Weighted alignments by GO term specificity
 - Options: Level weighted or degree weighted Ο

$$\omega_1(o) = \frac{l}{l_{\max}}, \ \omega_2(o) = \frac{1}{d(o)}$$

By level

By degree



biological

Loss function given weighted alignment pairs

$$\mathcal{L}_{T_2} = \frac{1}{|\mathcal{A}|} \sum_{(o,p)\in\mathcal{A}} \max\left\{ \frac{\omega(o)}{C} \left[f_{T_2}(o,p) + \gamma^{\mathcal{A}} - f_{T_2}(o',p') \right], 0 \right\}$$

weighted alignments

Bio-JOIE: Joint Training & Inference

• Joint learning on two knowledge models in protein and GO and one transfer model (one species)

$$\mathcal{L} = \lambda^t \mathcal{L}_T + \lambda^p \mathcal{L}_K^{\mathcal{G}_p} + \mathcal{L}_K^{\mathcal{G}_o}$$

 In case of multiple species with one universal gene ontology, Bio-JOIE can apply one knowledge model and one transfer model, designated for each species → "Multi-way"

$$\mathcal{L} = \sum_{i=1}^{m} \lambda_i^t \mathcal{L}_T + \sum_{i=1}^{m} \lambda_i^p \mathcal{L}_K^{\mathcal{G}_p} + \mathcal{L}_K^{\mathcal{G}_o}$$

- Background: Cross-domain Biological Knowledge Graphs
- Bio-JOIE Modeling

Experimental Results & Case Study

• Conclusion & Future Work

Datasets

- Protein-Protein Interaction Networks
 - 4 types of PPIs on three species (human, yeast and fly) from STRING database [1]
- Gene Ontology Datasets
 - Extracted from Gene Ontology Consortium [2]
 - Total 6 relations, such as is_a, part_of, regulates, etc.
 - Three aspects: biological process (BP), cellular components (CC), and molecular function (MF)

Table: Statistics of PPI Networks and GO annotations from 3 species

Species	# Proteins	# PPI Triples	# GO Annotations
Yeast	3,736	21,704	191,801
Fly	3,826	10,000	87,807
Human	8,204	36,400	102,759

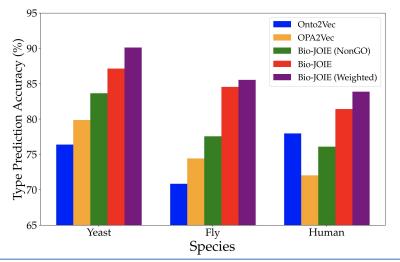
Table: Statistics of 3 aspects in GO

Aspects	BP	CC	MF
# GO entities	5744	1,147	1,764
# GO triples	19,021	2,116	2,190
# Protein-GO annotations (yeast)	72,956	58,729	60,116
# Protein-GO annotations (fly)	44,605	24,550	18,652
# Protein-GO annotations (human)	42,899	32,929	26,931

Experiment: PPI Type Prediction

Performance on PPI type prediction for three different species

- Task: Interaction type prediction given pairs of proteins
- Evaluation metric: Prediction accuracy
- Baselines: Onto2Vec (variants: Parent, Ancestor, Sum, Mean), OPA2Vec, Bio-JOIE (NonGO)



Observation: Bio-JOIE outperforms all baselines in PPI type prediction on three different species.

Experiment: PPI Type Prediction

Effects of different aspects of GO terms on PPI type prediction

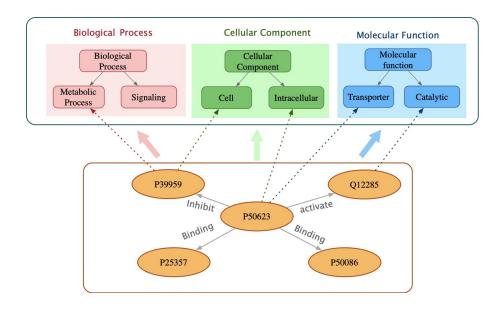


Table: Comparison of Bio-JOIE performance on combinations of three different aspects in GO.

#	Aspects	Yeast	Fly	Human
	BP	0.8794	0.8402	0.8153
1	CC	0.8499	0.8272	0.8054
	MF	0.8539	0.8386	0.8165
2	BP+CC	0.8717	0.8473	0.8271
	BP+MF	0.8673	0.8471	0.8163
	CC+MF	0.8569	0.8466	0.8170
3	AllGO	0.9012	0.8555	0.8389

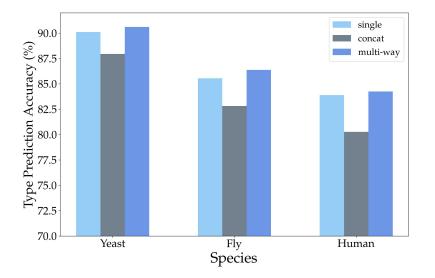
Observation: All aspects has help better predict PPI (among all three, BF contributes the most), which results that AlIGO is the best performed variant.

Experiment: PPI Type Prediction

Joint-training from multiple species further benefits PPI type prediction

• Model Setting:

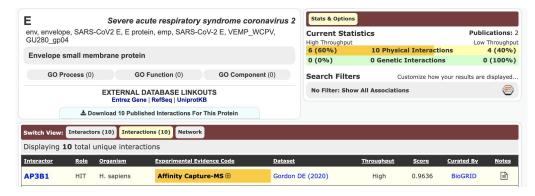
- Single (Train and test on one species; no joint training)
- Concat (Simply concatenate all PPI networks into one; one knowledge and transfer model for all three species)
- Multi-way (Each species of the three has one knowledge model and transfer model to GO)



Observation: Joint training Bio-JOIE from multiple species can further benefit PPI type prediction in each of the involved species.

Case Study: SARS-CoV-2 Prediction

- Data sources for SARS-CoV-2
 - Data collected from BioGrid[1] on SARS-CoV-2, SARS-CoV and MERS-CoV
 - 26 SARS-CoV-2 proteins (associated with 282 GO terms) and 30 viral proteins of SARS-CoV and MERS-CoV (associated with 630 GO terms)
 - 332 highly possible interactions of SARS-CoV-2 identified by Gordon et al [2] and 1131 virus-human pairs with low MIST scores, as negative examples.
- All processed datasets are available at <u>https://www.haojunheng.com/project/goterm</u>.



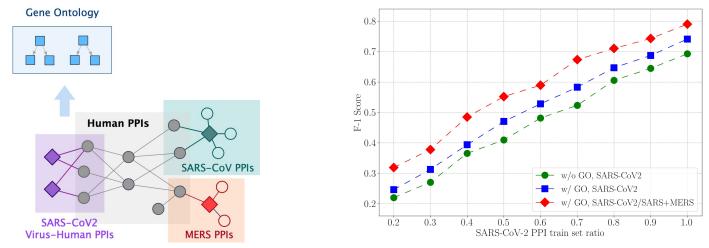
References:

[1] BioGrid: https://wiki.thebiogrid.org/doku.php/covid, COVID-19 Related GO Terms: http://geneontology.org/covid-19.html

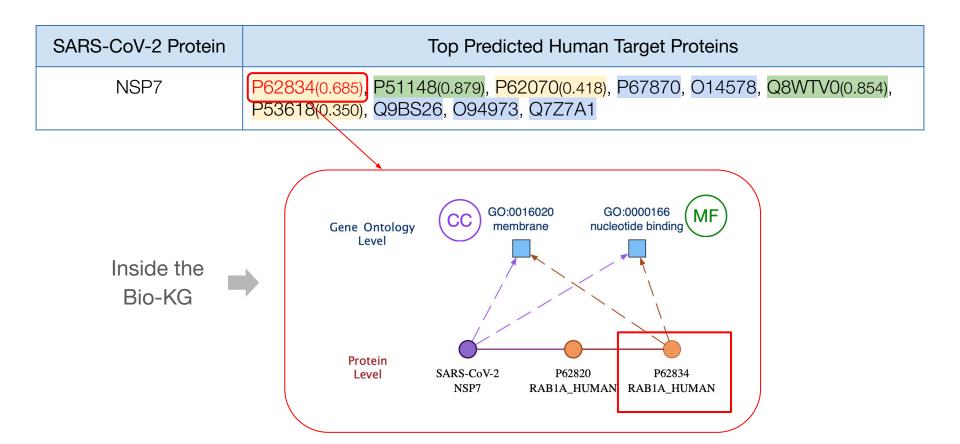
[2] David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature (2020), 1–13.

SARS-CoV-2 Human PPI Classification UCLA ScAi

- **Binary classification:** Predict whether pairs of proteins (viral protein and human target protein) interact with each other or not.
- Evaluation: Compare F-1 Score on different Bio-JOIE variants



Observation: (1) Using GO provide additional knowledge about SARS-COV-2 proteins and better improve the classification performance; (2) Bio-JOIE can utilize the PPI information from similar coronavirus and further enhance the classification ability.



- Background: Cross-domain Biological Knowledge Graphs
- Bio-JOIE Modeling
- Experimental Results & Case Study
- Conclusion & Future Work

Conclusion & Future Work

- Bio-JOIE enables representation learning for cross-domain biological KBs capturing **in-domain interaction information** and **cross-domain knowledge transfer**.
- Bio-JOIE leverages cross-domain complementary knowledge to achieve SOTA performance on PPI type prediction and clustering tasks.
- As one important application, Bio-JOIE helps predict human protein targets of **SARS-CoV-2**, potentially benefits de novo drug discovery and disease mitigation.
- Some future directions:
 - a. Incorporating multimodal features and gene annotations
 - b. Extending Bio-JOIE to interconnected domains other than protein and gene ontology.

Acknowledgement



Muhao Chen USC

Chelsea Ju UCLA

Yizhou Sun UCLA

Carlo Zaniolo UCLA

Wei Wang UCLA

For more information, please check our BCB paper and webpage!

Paper Link: To be updated Video Link: To be updated Project webpage: <u>https://www.haojunheng.com/project/goterm/</u>

Thank you!

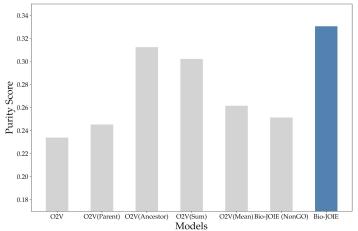
Q & A

Experiment: Enzyme-based Clustering

Using the learned embeddings for enzyme classification

- The Enzyme Commission number (EC number) defines a hierarchical classification scheme that provides the enzyme nomenclature based on enzyme-catalyzed reactions.
- 1340 yeast proteins collected from 7 classes of top-level EC numbers: oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases, and translocases.
- **K-means clustering** is applied to group them into seven non-overlapping clusters, based on the learned embeddings from Bio-JOIE, as well as baselines approaches.

Observation: The embeddings learned by Bio-JOIE can better preserve the enzyme-based features and perform better on clustering.



Supplementary: Data Sources

Datasets are collected from multiple sources such as STRING (human PPIs), BioGrid (virus-human PPIs) and AmiGO/QuickGO (gene ontology annotations).

Links:

- STRING: <u>https://string-db.org/cgi/download.pl</u>
- BioGrid (SARS-CoV/MERS/SARS-CoV-2): <u>https://wiki.thebiogrid.org/doku.php/covid</u>
- AmiGO 2: http://amigo.geneontology.org/amigo/dd browse
- QuickGO: <u>https://www.ebi.ac.uk/QuickGO/</u>

Project page: <u>https://www.haojunheng.com/project/goterm/</u>

Data Source

Virus-human Protein Interactions (PPI)

E Severe acute respiratory syndrome coronavirus 2 env, envelope, SARS-CoV2 E, E protein, emp, SARS-CoV-2 E, VEMP_WCPV,			Stats & Options Current Statist	Publications: 2		
GU280_gp04			High Throughput	Low Throughput		
Envelope small membrane protein				6 (60%)	10 Physical Interactions	4 (40%)
•	•			0 (0%)	0 Genetic Interactions	0 (100%)
GO Process (0)	GO Function (0)	GO Componen	nt (0)	Search Filters	Customize how your re	esults are displayed
EXTERNAL DATABASE LINKOUTS Entrez Gene RefSeq UniprotKB			No Filter: Show A			
Download 10 Published Interactions For This Protein						

Switch View: Interactors (10) Interactions (10) Network

Displaying **10** total unique interactions

Interactor	<u>Role</u>	<u>Organism</u>	Experimental Evidence Code	<u>Dataset</u>	<u>Throughput</u>	<u>Score</u>	Curated By	<u>Notes</u>
AP3B1	HIT	H. sapiens	Affinity Capture-MS 🕀	Gordon DE (2020)	High	0.9636	BioGRID	
BRD2	HIT	H. sapiens	Affinity Capture-MS 🕀	Gordon DE (2020)	High	0.9066	BioGRID	
BRD4	HIT	H. sapiens	Affinity Capture-MS 🕀	Gordon DE (2020)	High	0.9785	BioGRID	
CWC27	HIT	H. sapiens	Affinity Capture-MS 🕀	Gordon DE (2020)	High	0.8931	BioGRID	
SLC44A2	HIT	H. sapiens	Affinity Capture-MS 🕀	Gordon DE (2020)	High	0.9503	BioGRID	
ZC3H18	HIT	H. sapiens	Affinity Capture-MS 🕀	Gordon DE (2020)	High	0.7964	BioGRID	

Data Source

Gene Ontology From AmiGO/QuickGO

AmiGO Drill-down Browser: [Demo] Biological Process Cellular Component Molecular Function GoTerm Example: [Example: GO:0051169] SARS-CoV-2 GoTerm annotations: [Example: P0DTC1 (R1A HUMAN)]

