

Universal Representation Learning of Knowledge Bases by Jointly Embedding Instances and Ontological Concepts

EMBEDDING TWO-VIEW KNOWLEDGE GRAPH

- Instance View
 - Relational triplets between specific entities
- Ontology View
 - Triplets of abstract concepts connected by semantic meta-relations
 - Hierarchical structure of the ontology view (e.g. "subclass" meta-relations between concepts)
- Cross-view Type links (alignment) – Connecting concepts and instances (entity types)

JOIE: MODEL OVERVIEW

- Embedding-based method
- Learning latent representations for all objects in KG Cross-view Association Models
 - Cross-view Grouping (CG)
 - Cross-view Transformation (CT)
- Intra-view Models
 - Default intra-view models (TransE, DistMult, HolE)
 - Hierarchy-aware modeling for the ontology view
- Joint training on intra-view model (for both views) and cross-view model.

 $J = J_{\text{Intra}} + \omega \cdot J_{\text{Cross}}$

CROSS-VIEW MODELS

Goal: capture many-to-one association between the entities e and the corresponding concept c **Cross-view Grouping**

$$J_{\text{Cross}}^{\text{CG}} = \frac{1}{|\mathcal{S}|} \sum_{(e,c)\in\mathcal{S}} \left[||\mathbf{c} - \mathbf{e}||_2 - \gamma^{\text{CG}} \right]_+$$

Cross-view Transformation

Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun and Wei Wang Computer Science Department, University of California, Los Angeles Email: jhao@cs.ucla.edu | Website: https://www.haojunheng.com/project/joie-kdd/

$$f_{\text{TransE}}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||_2$$
$$f_{\text{Mult}}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = (\mathbf{h} \circ \mathbf{t}) \cdot \mathbf{r}$$
$$f_{\text{HolE}}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = (\mathbf{h} \star \mathbf{t}) \cdot \mathbf{r}$$

Triple Loss

$$J_{\text{Intra}}^{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{\substack{(h,r,t) \in \mathcal{G} \\ \wedge (h',r,t') \notin \mathcal{G}}} \left[\gamma^{\mathcal{G}} + f(\mathbf{h}', \mathbf{r}, \mathbf{t}') - f(\mathbf{h}, \mathbf{r}, \mathbf{t}) \right]_{\mathcal{H}}$$

Hierarchy-Aware model for the ontology-view \Rightarrow For example, given, c_l : singer and c_h : person:

 $g_{\mathrm{HA}}(\mathbf{c}_h) = \sigma(\mathbf{W}_{\mathrm{HA}} \cdot \mathbf{c}_l + \mathbf{b}_{\mathrm{HA}})$ $J_{\text{Intra}}^{\text{HA}} = \frac{1}{|\mathcal{T}|} \sum_{(c_l, c_h) \in \mathcal{T}} \left[\gamma^{\text{HA}} + ||\mathbf{c}_h - g(\mathbf{c}_l)||_2 - \left| \left| \mathbf{c_h}' - g(\mathbf{c_l}) \right| \right|_2 \right]_+$ $\wedge (c_l, c'_h) \notin \mathcal{T}$

Total training loss for Intra-view model

 $J_{\text{Intra}} = J_{\text{Intra}}^{\mathcal{G}_{I}} + \alpha_{1} \cdot J_{\text{Intra}}^{\mathcal{G}_{O} \setminus \mathcal{T}} + \alpha_{2} \cdot J_{\text{Intra}}^{\text{HA}}$

RESULTS: TRIPLE COMPLETION & ENTITY TYPING

Dataset YAGO26K-906 (from YAGO) and DB111K-184 (from DBpedia)

1	Dataset	\mathcal{G}_I Ent.	\mathcal{G}_I Rel.	\mathcal{G}_I Tri.	\mathcal{G}_O Co
	YAGO26K-906	26,078	34	390,738	906
	DB111K-174	111,762	305	863,643	174

Evaluation Triple completion (link prediction) and entity typing

Task 1: Triple completion on both views (YAGO)

	Query		
graduated_from Judea Pearl	(scientist,?r, university)		
Julian Mcauley Jure Computer Jure Scientist Leskovec	(boxer, ?r, club)		
Jiawei Han	(scientist, ?r, scientist)		

Long-tail Entity Typing

	Examples of long-tail entity typing			I ong-tail entity typing accuracy		
related Artist	Entity	Model	Top 3 Predictions	Datasots	$\nabla \Delta C O$	DBnodia
ward Singer Album	Laurence Fishburne	DistMult	football, club, team	DistMult	10.89	<u>16.48</u>
		MTransE	writer, person , artist	MTransE	46.45	46.67
Pablo Pards nominated Pablo Alborán created Prometo	Warangal City	JUIE	person, artist, writer	JOIE-CG	59.97	64.45
		MTransF	region, city , settlement city , town, country	JOIE-CT	62.05	66.35
		JOIE		JOIE-HACT	69.66	67.34
-						

JOIE-CG

ACKNOWLEDGEMENT

Supported by NIH R01GM115833, U01HG008488, U54GM114833 NSF DBI-1565137, DGE-1829071, NSF III-1705169, NSF Career Award 1741634 and Amazon Research Award.

Paper Link

