
Universal Representation Learning of Knowledge Bases
by Jointly Embedding Instances and Ontological Concepts

Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun and Wei Wang
Computer Science Department, University of California, Los Angeles

Email: jhao@cs.ucla.edu | Website: https://www.haojunheng.com/project/joie-kdd/

EMBEDDING TWO-VIEW KNOWLEDGE GRAPH

• Instance View
– Relational triplets between specific entities

• Ontology View
– Triplets of abstract concepts connected by semantic

meta-relations
– Hierarchical structure of the ontology view (e.g.

“subclass” meta-relations between concepts)
• Cross-view Type links (alignment)

– Connecting concepts and instances (entity types)
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JOIE: MODEL OVERVIEW

• Embedding-based method
– Learning latent representations for all objects in KG

• Cross-view Association Models
– Cross-view Grouping (CG)
– Cross-view Transformation (CT)

• Intra-view Models
– Default intra-view models (TransE, DistMult, HolE)
– Hierarchy-aware modeling for the ontology view

• Joint training on intra-view model (for both views) and
cross-view model.

J = JIntra + ω · JCross
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CROSS-VIEW MODELS

Goal: capture many-to-one association between
the entities e and the corresponding concept c
Cross-view Grouping

JCG
Cross =

1

|S|
∑

(e,c)∈S

[
||c− e||2 − γCG

]
+

Cross-view Transformation

fCT(e) = σ(Wct · e+ bct)
JCT

Cross=
1

|S|
∑

(e,c)∈S
∧(e,c′)/∈S

[γCT+||c−fCT(e)||2−||c′−fCT(e)||
2
]
+
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INTRA-VIEW MODELS

Goal: Embed the relational structures in each view
Techniques: TransE, DistMult, HolE

fTransE(h, r, t) = −||h+ r− t||2
fMult(h, r, t) = (h ◦ t) · r
fHolE(h, r, t) = (h ? t) · r

Triple Loss

JGIntra = 1
|G|
∑

(h,r,t)∈G
∧(h′,r,t′)/∈G

[
γG + f(h′, r, t′)− f(h, r, t)

]
+

Hierarchy-Aware model for the ontology-view
⇒ For example, given, cl : singer and ch : person:

gHA(ch) = σ(WHA · cl + bHA)
JHA

Intra=
1

|T |
∑

(cl,ch)∈T
∧(cl,c′h)/∈T

[γHA+||ch−g(cl)||2−||ch
′−g(cl)||

2
]
+

Total training loss for Intra-view model

JIntra = JGIIntra + α1 · JGO\TIntra + α2 · JHA
Intra

RESULTS: TRIPLE COMPLETION & ENTITY TYPING

Dataset YAGO26K-906 (from YAGO) and DB111K-184 (from DBpedia)

Dataset GI Ent. GI Rel. GITri. GO Con. GO MRel. GI Tri. Typelinks
YAGO26K-906 26,078 34 390,738 906 30 8,962 9,962

DB111K-174 111,762 305 863,643 174 20 763 99,748

Evaluation Triple completion (link prediction) and entity typing

Task 1: Triple completion on both views (YAGO)
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Task 2: Entity Typing
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JOIE: APPLICATIONS

Ontology Population
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Examples of populated ontology
Query Top 3 Populated Triples with distances

(scientist,?r,
university)

scientist, graduated from, university (0.499)
scientist, isLeaderOf , university (1.082)
scientist, isKnownFor, university (1.098)

(boxer, ?r,
club)

boxer, playsFor, club (1.467)
boxer, isAffiliatedTo, club (1.474)

boxer, worksAt, club (1.479)

(scientist, ?r,
scientist)

scientist, doctoralAdvisor, scientist (0.204)
scientist, doctoralStudent, scientist (0.221)

scientist, relative, scientist (0.228)

Long-tail Entity Typing
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Examples of long-tail entity typing
Entity Model Top 3 Predictions

Laurence
Fishburne

DistMult football, club, team
MTransE writer, person, artist
JOIE person, artist, writer

Warangal
City

DistMult country, village, city
MTransE region, city, settlement
JOIE city, town, country

Long-tail entity typing accuracy
Datasets YAGO DBpedia
DistMult 10.89 16.48
MTransE 46.45 46.67
JOIE-CG 59.97 64.45
JOIE-CT 62.05 66.35

JOIE-HACT 69.66 67.34
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