

Universal Representation Learning of Knowledge Bases by Jointly Embedding Instances and Ontological Concepts

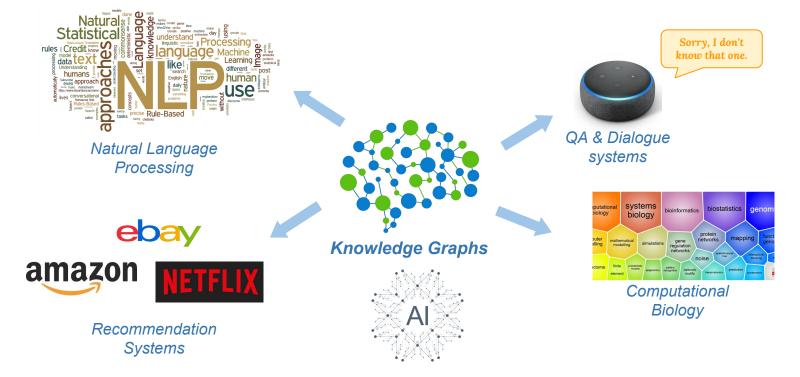
Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun, Wei Wang University of California, Los Angeles

- Background: Knowledge Graphs and Embeddings
- Formulation: Two-view Knowledge Graphs
- JOIE Modeling: Cross-view & Intra-view
- Experimental Results
- Conclusion & Future Work

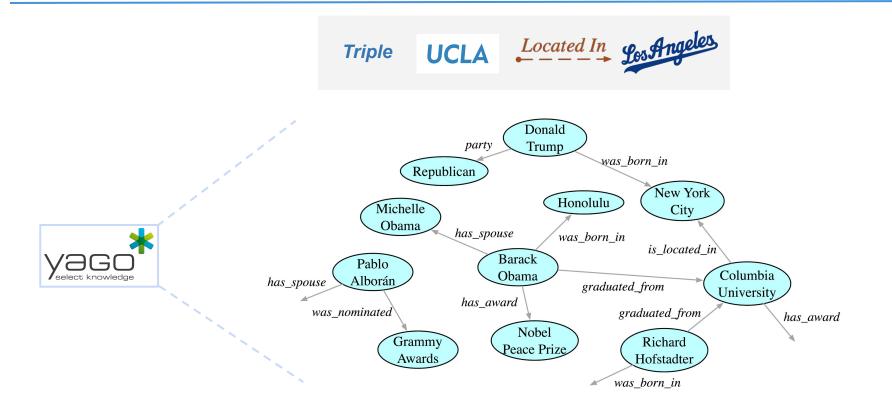
Knowledge graphs (KGs) Are Everywhere

Knowledge Graphs Are Foundational

- Foundational to knowledge-driven AI systems
- Enable many downstream applications (NLP tasks, QA systems, etc)

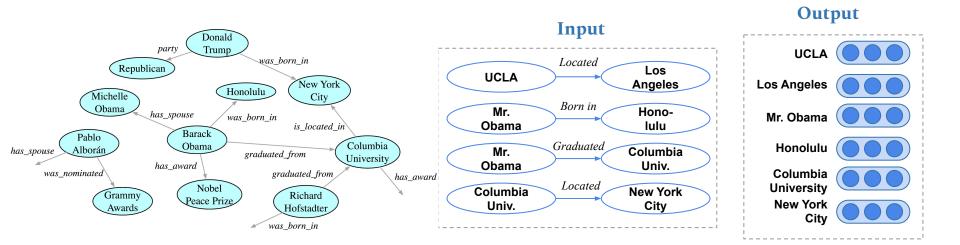


KG Example From YAGO



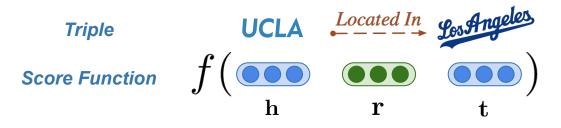
KG Embedding From Triples

- Knowledge graph embeddings represent entities and relations as latent vectors or matrices and support effective relation learning and inference.
- Input: Relation facts (triples)
- Output: Embedding representations of objects and relations



Learning KG Embeddings

• Key of existing KG embedding methods: Triple score function

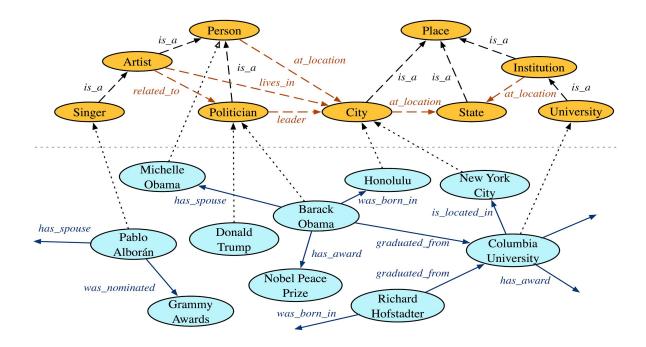


• Previous research employ various arithmetic methods to capture observed relations of entities in a single KG (for example, translational distance or similarity)

Model	Score Function	Embeddings
TransE (Bordes et al., 2013)	$ \mathbf{h} + \mathbf{r} - \mathbf{t} $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^{k}$
TransX	$ - g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t}) $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^{k}$
DistMult (Yang et al., 2014)	$(\mathbf{h} \circ \mathbf{t}) \cdot \mathbf{r}$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^{k}$
HolE (Nickel et al., 2016)	$(\mathbf{h} \star \mathbf{t}) \cdot \mathbf{r}$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^{k}$
ComplEx (Trouillon et al., 2016)	${ m Re}\langle {f r},{f h},{f ar t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{C}^{k}$
ConvE (Dettmers et al., 2017)	$\langle \sigma(\operatorname{vec}(\sigma([\mathbf{r},\mathbf{h}]*\Omega))\mathbf{W}),\mathbf{t} \rangle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^{k}$
RotatE (Sun et al., 2017)	$- \mathbf{h}\circ\mathbf{r}-\mathbf{t} ^2$	$ \mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k, r_i = 1$

Drawbacks & Limitation

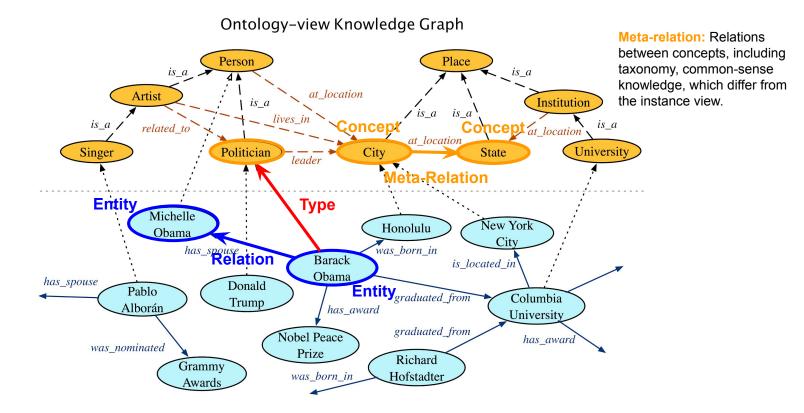
- Most existing approaches embed instance-level knowledge.
- KGs have both specific instances and general ontological concepts.



Outline

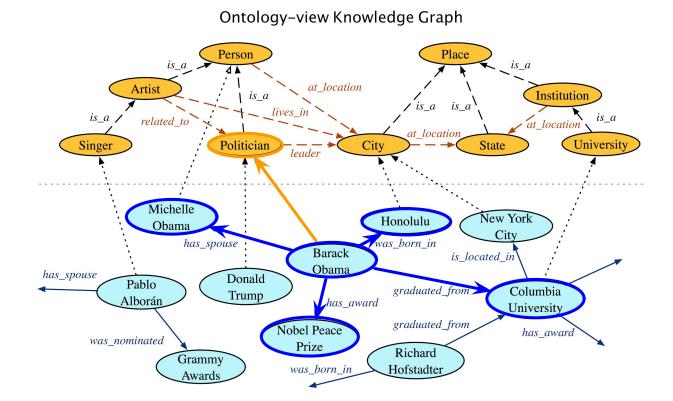
- Background: Knowledge Graphs and Embeddings
- Formulation: Two-view Knowledge Graphs
- JOIE Modeling: Cross-view & Intra-view
- Experimental Results
- Conclusion & Future Work

Two-view KG: More than an instance view



Instance-view Knowledge Graph

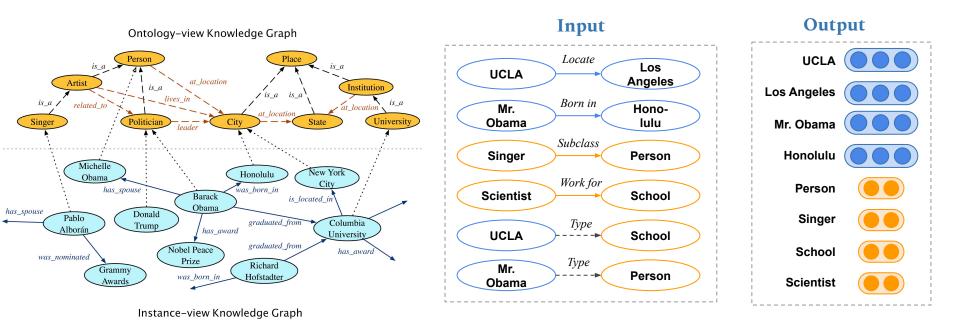
Two-view KG: More than just a set of triples



Instance-view Knowledge Graph

Problem Formulation

- Input: Instance-view KG triples, ontology-view KG triples, cross-view type links
- **Output:** Embeddings of entities, concepts, relations and meta-relations

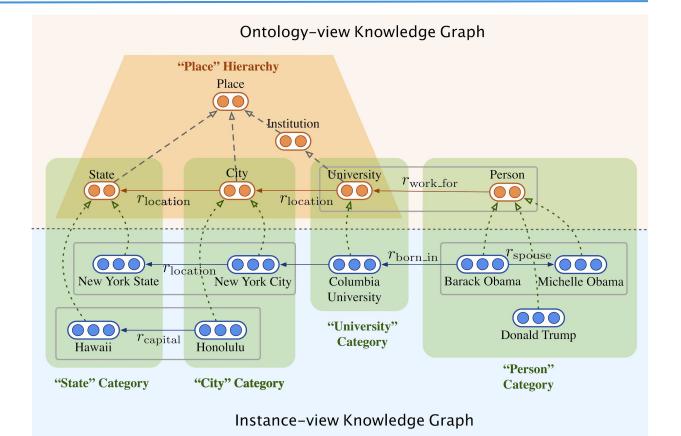


- Many existing KGs, such as YAGO and DBpedia, have constructed two views.
- Two views represent different levels of abstraction for relational knowledge, and can be used to enhance each other.
- Embeddings of a two-view KG provide more natural and clearer knowledge organization and curation, and are in line with human cognition.

Outline

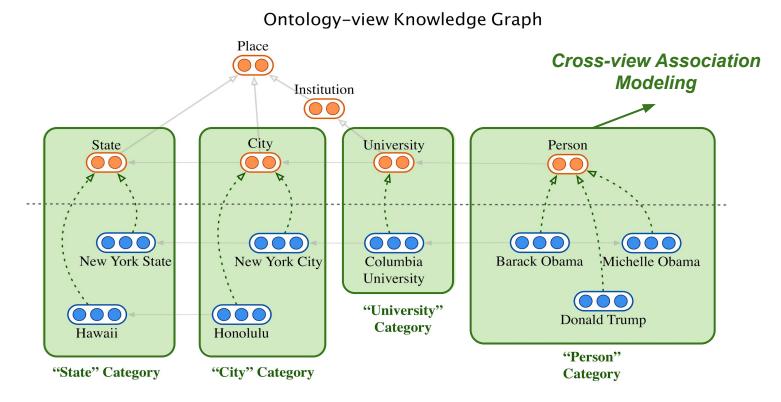
- Background: Knowledge Graphs and Embeddings
- Formulation: Two-view Knowledge Graphs
- JOIE Modeling: Cross-view & Intra-view
- Experimental Results & Case Study
- Conclusion & Future Work

JOIE: Modeling



- Cross-view
 Association model
- Intra-view model

JOIE: Cross-view Association Model



Instance-view Knowledge Graph

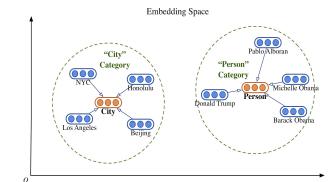
• **Goal:** capture associations between the entities e and corresponding concepts c

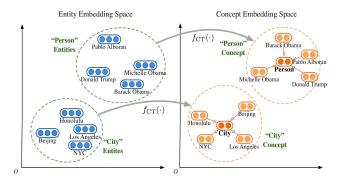
• Cross-view Grouping (CG)

$$J_{\text{Cross}}^{\text{CG}} = \frac{1}{|\mathcal{S}|} \sum_{(e,c)\in\mathcal{S}} \left[||\mathbf{c} - \mathbf{e}||_2 - \gamma^{\text{CG}} \right]_+$$

• Cross-view Transformation (CT)

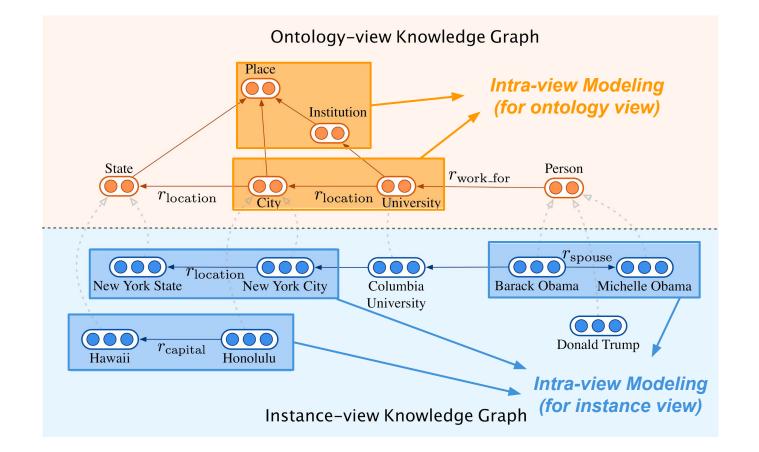
$$f_{\rm CT}(\mathbf{e}) = \sigma(\mathbf{W}_{\rm ct} \cdot \mathbf{e} + \mathbf{b}_{\rm ct})$$
$$J_{\rm Cross}^{\rm CT} = \frac{1}{|\mathcal{S}|} \sum_{\substack{(e,c) \in \mathcal{S} \\ \wedge (e,c') \notin \mathcal{S}}} \left[\gamma^{\rm CT} + ||\mathbf{c} - f_{\rm CT}(\mathbf{e})||_2 - ||\mathbf{c}' - f_{\rm CT}(\mathbf{e})||_2 \right]_+$$





JOIE: Cross-view Model

JOIE: Intra-view Model

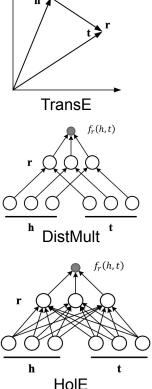


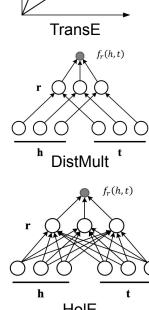
- Goal: To embed the relational structures in the instance view of the KB
- Apply any KG embedding techniques on instance view •
 - Three representatives: TransE, DistMult, and HolE Ο

$$egin{aligned} f_{ ext{TransE}}(\mathbf{h},\mathbf{r},\mathbf{t}) &= -||\mathbf{h}+\mathbf{r}-\mathbf{t}||_2 \ f_{ ext{Mult}}(\mathbf{h},\mathbf{r},\mathbf{t}) &= (\mathbf{h}\circ\mathbf{t})\cdot\mathbf{r} \ f_{ ext{HolE}}(\mathbf{h},\mathbf{r},\mathbf{t}) &= (\mathbf{h}\star\mathbf{t})\cdot\mathbf{r} \end{aligned}$$

Training on marginal ranking loss •

$$J_{\text{Intra}}^{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{\substack{(h,r,t) \in \mathcal{G} \\ \wedge (h',r,t') \notin \mathcal{G}}} \left[\gamma^{\mathcal{G}} + f(\mathbf{h}',\mathbf{r},\mathbf{t}') - f(\mathbf{h},\mathbf{r},\mathbf{t}) \right]_{+}$$

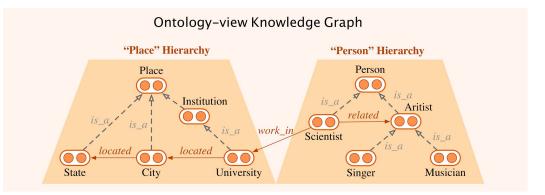




JOIE: Intra-view Model for Ontology View

- We can still follow the same techniques as the instance view. $J_{\text{Intra}} = J_{\text{Intra}}^{\mathcal{G}_I} + \alpha_1 \cdot J_{\text{Intra}}^{\mathcal{G}_O}$
- However, the hierarchical structure of the ontology-view represents critical semantics, with special meta relations such as "*is_a*" and "*subclass*".

 C_l : Scientist C_h :Person $g_{\mathrm{HA}}(\mathbf{c}_h) = \sigma(\mathbf{W}_{\mathrm{HA}} \cdot \mathbf{c}_l + \mathbf{b}_{\mathrm{HA}})$



• Similar to CT model, we model such hierarchical structures in,

$$J_{\text{Intra}}^{\text{HA}} = \frac{1}{|\mathcal{T}|} \sum_{\substack{(c_l, c_h) \in \mathcal{T} \\ \land (c_l, c'_h) \notin \mathcal{T}}} \left[\gamma^{\text{HA}} + ||\mathbf{c}_h - g(\mathbf{c}_l)||_2 - ||\mathbf{c_h}' - g(\mathbf{c_l})||_2 \right]_+$$

JOIE: Summary & Model Highlights

- Two model components: Cross-view model and intra-view model
- Cross-view association model $\Rightarrow J_{\rm Cross}$
 - Categorical grouping (CG)
 - Categorical transformation (CT)
- Intra-view model $\Rightarrow J_{\rm Intra}$
 - Can apply any KG embedding on each view
 - Hierarchical-aware modeling on ontological view specifically for taxonomy meta relations
- Joint training on cross-view loss and intra-view loss

$$J = J_{\rm Intra} + \omega \cdot J_{\rm Cross}$$

Outline

- Background: Knowledge Graphs and Embeddings
- Formulation: Two-view Knowledge Graphs
- JOIE Modeling: Cross-view & Intra-view
- Experimental Results & Case Study
- Conclusion & Future Work

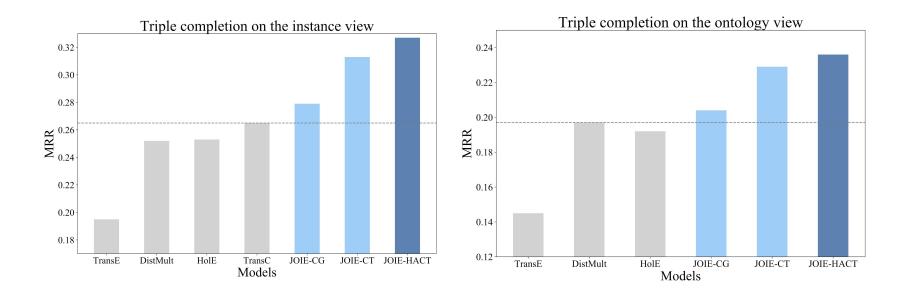
Experiment Setup

- Datasets: YAGO26K-906 (from YAGO) and DB111K-184 (from DBpedia)
- Tasks: Triple completion and entity typing
- Evaluation metrics
 - Triple completion: MRR, Hit@K score (K=1,3,10)
 - Entity typing: Accuracy (Hit@1), Hit@3 Score
- Baselines: TransE, DistMult, HolE, TransC, MTransE

Dataset Instance Graph G_I		Ontology Graph \mathcal{G}_O			Type Links S		
Dataset	#Entities	#Relations	#Triples	#Concepts	#Meta-relations	#Triples	Type Links O
YAGO26K-906	26,078	34	390,738	906	30	8,962	9,962
DB111K-174	111,762	305	863,643	174	20	763	99,748

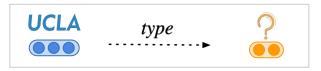
Task 1: Triple Completion

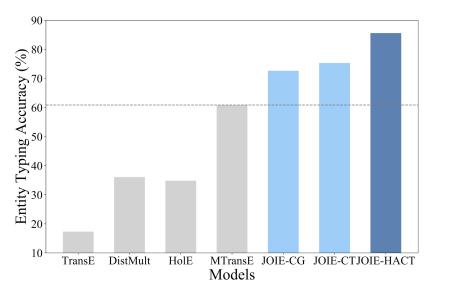
• Given the head and predicate of a triple, what is the most likely tail (answer)?



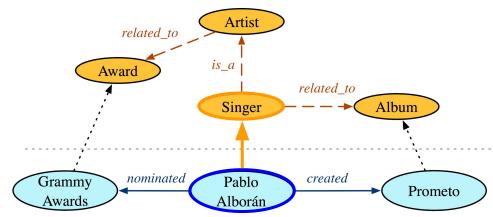
Task 2: Entity Typing

• Given an entity without a known type, what is the most likely type (concept) that it associates with?





Type inference on 30% of all entities on YAGO.



Example of long-tail entity typing

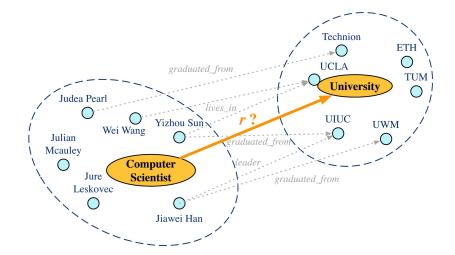
Entity	Model	Top 3 Concept Prediction	
Laurence Fishburne	DistMult	football team, club, team	
	MTransE	writer, person , artist	
	JOIE	person, artist, philosopher	
Warangal City	DistMult	country, village, city	
	MTransE	administrative region, city , settlement	
	JOIE	city, town, country	
Royal Victor -ian Order	DistMult	person, writer, administrative region	
	MTransE	election, award, order	
	JOIE	award, order , election	

Entity typing accuracy on long-tail entities

Datasets YAGO		GO26K	-906
Metrics	MRR	Acc.	Hit@3
DistMult	0.156	10.89	25.33
MTransE	0.526	46.45	67.25
JOIE-TransE-CG	0.708	59.97	79.80
JOIE-TransE-CT	0.737	62.05	82.60
JOIE-HATransE-CT	0.802	69.66	87.75

Task 3: Ontology Population

 \rightarrow JOIE can help enhance the quality of ontology view and make it more complete and informative by populating the instance-level knowledge.



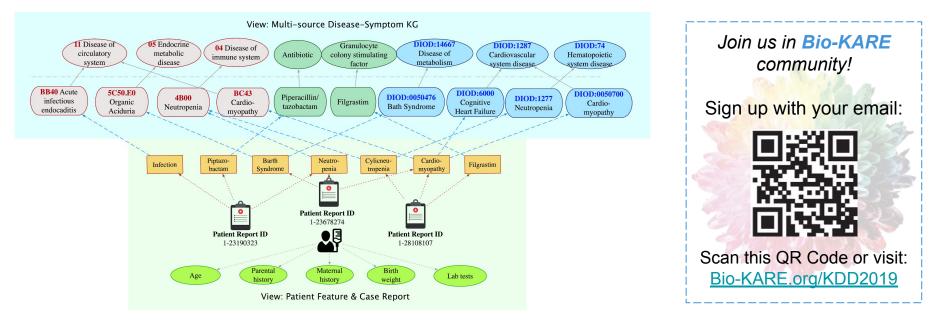
Examples of ontology population		
Query	Top 3 Populated Triples with distances	
(scientist,?r, university)	scientist, <i>graduated from</i> , university (0.499) scientist, <i>isLeaderOf</i> , university (1.082) scientist, <i>isKnownFor</i> , university (1.098)	
(boxer, ?r, club)	boxer, <i>playsFor</i> , club (1.467) boxer, <i>isAffiliatedTo</i> , club (1.474) boxer, <i>worksAt</i> , club (1.479)	
(scientist, ?r, scientist)	scientist, <i>doctoralAdvisor</i> , scientist (0.204) scientist, <i>doctoralStudent</i> , scientist (0.221) scientist, <i>relative</i> , scientist (0.228)	

Outline

- Background: Knowledge Graphs and Embeddings
- Formulation: Two-view Knowledge Graphs
- JOIE Modeling: Cross-view & Intra-view
- Experimental Results & Case Study
- Conclusion & Future Work

Conclusion & Future Work

- Joint learning on the instance and ontology views improves the KG embeddings.
- Incorporating ontologies in KGs is beneficial.
- Two-view KG modeling can be applied in a wide selection of interdisciplinary applications.
 - Disease-symptom with multiple medical KGs for automated patient case report analysis.



National Center for Biomedical Knowledge Architecture & Relationship Enrichment Dr. Wei Wang (University of California, Los Angeles) Dr. Peipei Ping (University of California, Los Angeles) Dr. Cathy Wu (University of Delaware) Dr. Jiawei Han (University of Illinois, Urbana-Champaign)

Do you have biomedicine's next TOP model? Validate your model with Bio-KARE

Join the Bio-KARE community of researchers, developers, and clinicians today

Opportunity to revolutionize model development and empower your research. Sign up with your email:

Scan this QR Code or visit: Bio-KARE.org/KDD2019

Thank you!

Q & A

Join us in **Bio-KARE** community!

Sign up with your email:

Scan this QR Code or visit: <u>Bio-KARE.org/KDD2019</u>