MEDTO: Medical Data to Ontology Matching using Hybrid Graph Neural Networks

Applied Data Science Track Paper, KDD 2021

Junheng Hao^{1,2}, Chuan Lei², Vasilis Efthymiou³, Abdul Quamar², Fatma Özcan⁴, Yizhou Sun¹, Wei Wang¹

¹ University of California, Los Angeles (UCLA)
² IBM Research AI, Almaden
³ FORTH-ICS
⁴ Google

August, 2021 | Virtual Conference

Outline

Motivation: Data-to-Ontology Matching

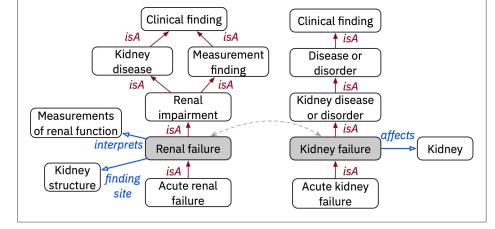
- MEDTO System Architecture Overview
- Model: Ontology Bootstrapping and Matching
- Experiments & Case Study
- Summary & Future Directions

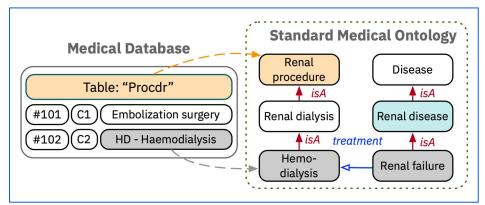
World of AI-assisted Healthcare

• Medical ontologies, many developed by experts, help define, standardize and organize concepts in the medical domain, which are foundational to support healthcare applications (such as clinic documentation, medical conversational system, Q&A).

Data-to-Ontology Matching

Ontology-Ontology Matching

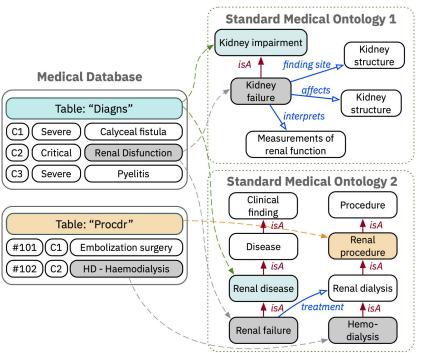




Data-to-ontology Matching

Data-to-Ontology Matching

- Large-scale clinical documents and medical record in databases
- Map database schema/tables to standard ontologies
 - Unifying and standardizing concepts in data
 - Enhancing downstream question answering and conversational systems
- Existing approaches are limited
 - Mappings between well-established ontologies cannot be directly applied on original data
 - Rule-based methods are hard to adapt to different domains → Low accuracy and robustness
- Challenges
 - Create a semantically rich ontology from databases
 - Effective matching techniques using various semantic features in the ontologies



Problem Statement

- Definitions:
 - Medical database *D*, represented by a relational schema *S* and its instances *I*
 - Medical ontology O = (C, R, T), where C is the set of concepts, R is the set of relations, and $T = C \times R \times C$ is the set of triplets
- Problem Formulation:
 - Given a medical database *D* and a standard medical ontology *O*, the data to ontology matching problem is to find a set of matches *M* that map the schema *S* of *D* to the concepts in *O*, such that {(*p*, *q*) ∈ *S* × *O* | *p* ≡ *q* }.

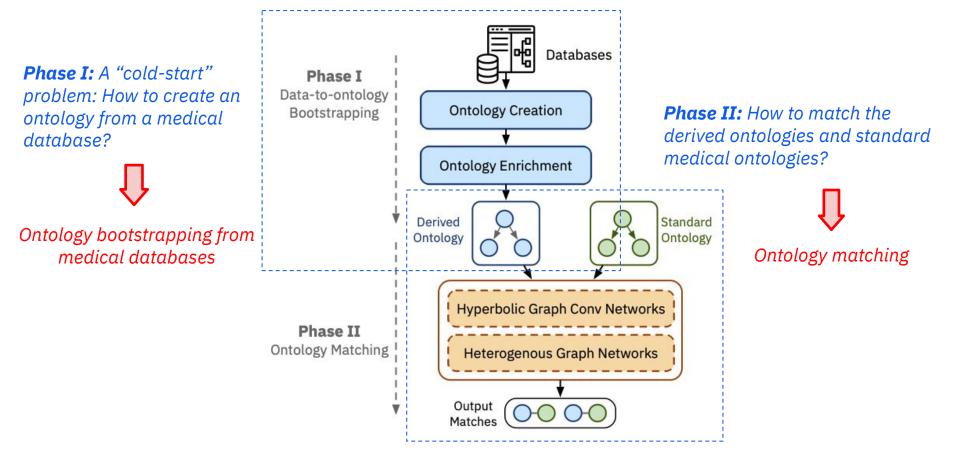
Outline

Motivation: Data-to-Ontology Matching

MEDTO System Architecture Overview

- Model: Ontology Bootstrapping and Matching
- Experiments & Case Study
- Summary & Future Directions

MEDTO System Architecture



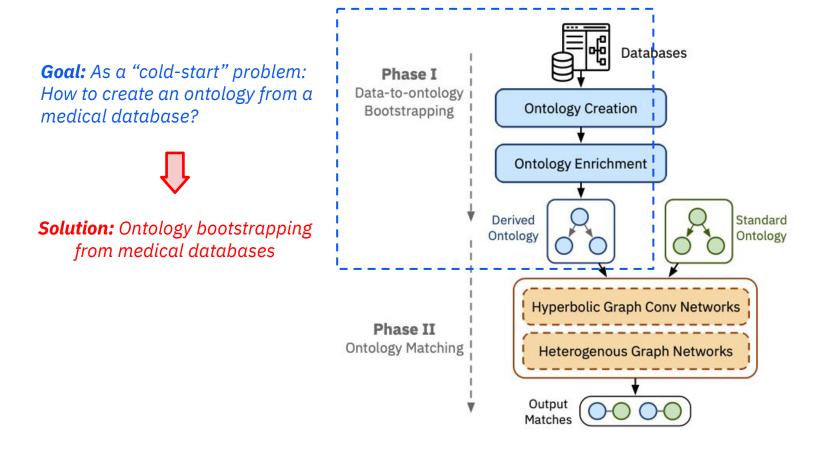
Outline

- Motivation: Data-to-Ontology Matching
- MEDTO System Architecture Overview

Model: Ontology Bootstrapping and Matching

- Experiments & Case Study
- Summary & Future Directions

Phase I: Ontology bootstrapping

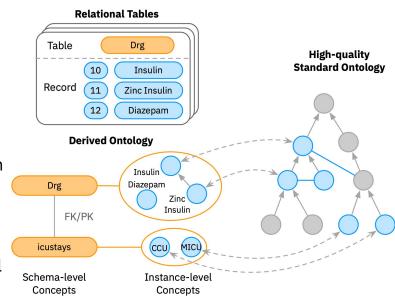


Ontology Bootstrapping

- **Goal:** Derive an ontology from a medical dataset stored in a relational database
- **Steps:** (1) Ontology creation; (2) Ontology Enrichment
- Creation step:
 - Concepts: Create a concept for each table with its representative columns as data properties
 - Relations: Add a relation between two concepts based on primary key-foreign key relationships between tables

• Enrichment step:

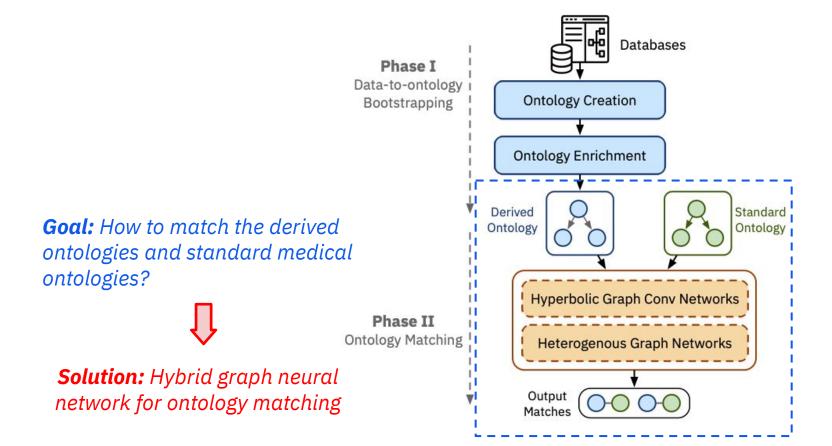
- Concept augmentation: Add instance-level concepts (entries in table) to the created ontology, if instance-level concepts have their matches in the standard ontology
- Neighborhood augmentation: Populating edges from standard ontology via pre-aligned seed concepts



UCLA

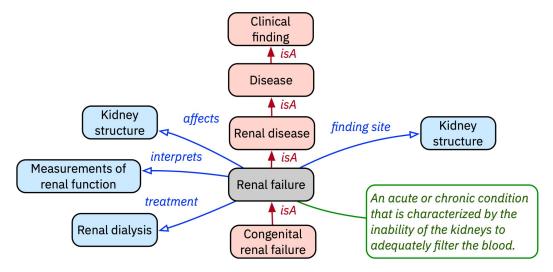
∢]

Phase II: Ontology Matching



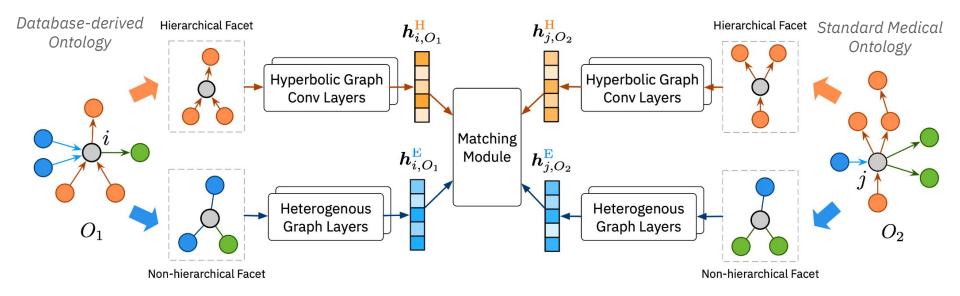
Matching Ontologies: Challenges

- After data have been transformed to one ontology, the next step is to match such ontology O₁ to high-quality standard ontologies O₂.
- Challenge: Learn comprehensive representations from the *descriptive text features*, *hierarchical taxonomy features* (normally defined in "*Is-A*" relation) and *semantic relational facts* between concepts in the ontology, which are important to identify the match between two ontologies.



Ontology Matching

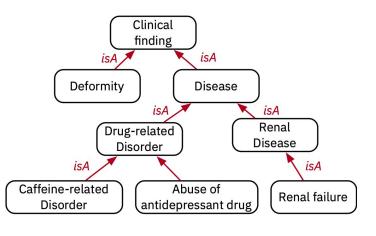
- Our solution: Hyperbolic Graph Convolution Module + Heterogeneous Graph Module
 - Focus on ontology hierarchical structures and relational structures



Architecture of ontology matching between two given ontologies

Hyperbolic Graph Convolution Layer

- Goal: Better capture concept hierarchies in medical ontologies by embeddings in the hyperbolic space
- Adopted from Hyperbolic Graph Convolutional Neural Network (HGCN) [1]



$$\mathbf{h}_{i}^{\prime,H} = \left(\mathbf{W}^{\prime}\otimes^{\mathcal{K}_{l-1}}\mathbf{h}_{i}^{\prime-1,H}
ight)\oplus^{\mathcal{K}_{l-1}}\mathbf{b}^{\prime}$$

$$w_{ij} = \text{SOFTMAX} \left(\text{MLP} \left(\log_{o}^{K} \left(\mathbf{h}_{i}^{H} \right) || \log_{o}^{K} \left(\mathbf{h}_{j}^{H} \right) \right) \right)$$
$$\text{AGG}^{K} (\mathbf{h}^{H})_{i} = \exp_{\mathbf{h}_{i}^{H}}^{K} \left(\sum_{j \in \mathcal{N}(i)} w_{ij} \log_{\mathbf{h}_{i}^{H}}^{K} \left(\mathbf{h}_{j}^{H} \right) \right)$$
$$\mathbf{h}_{i}^{I,H} = \sigma^{\bigoplus_{i=1}^{K_{l-1},K_{l}}} \left(\text{AGG}^{K_{l-1}} \left(\mathbf{h}^{I,H} \right)_{i} \right)$$
$$= p((c_{i}, c_{j}) \in \mathcal{C}) = \left\{ \exp \left[\frac{1}{t} \left(d^{K} \left(\mathbf{h}_{i}^{H}, \mathbf{h}_{j}^{H} \right)^{2} - r \right) \right] + 1 \right\}^{-1}$$

UCLA

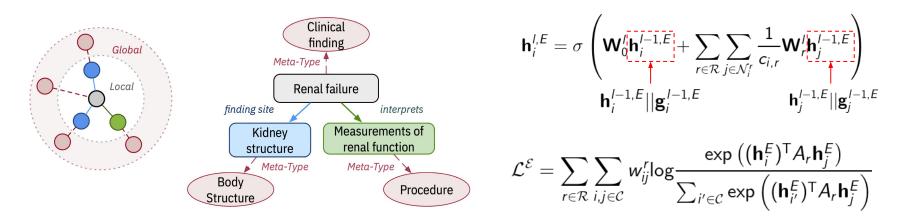
Ξ

[1] I. Chami, Z. Ying, C. Ré, and J. Leskovec. Hyperbolic graph convolutional neural networks. In NeurIPS, pages 4869–4880, 2019.

 $\mathcal{L}^{\mathcal{H}}$

Heterogeneous Graph Layer

- Goal: Model the multi-relational non-hierarchical relationships in the ontologies
- Enhance R-GCN [2] by using neighbor's top-level ancestor concepts (meta-type) in the ontology (e.g., *"kidney"* → *"body structure"*) as "global features"
- Both local and global context information are encoded by neighborhood aggregation



[2] M. Schlichtkrull, T. N. Kipf, P. Bloem, et. al. Modeling Relational Data with Graph Convolutional Networks. CoRR abs/1703.06103, 2017.

Matching and Training

• The final matching module takes pairs of concept embeddings and outputs prediction score, implemented by MLP (or Transformer encoder).

$$M\left(\mathbf{h}_{i}^{U},\mathbf{h}_{j}^{U}\right) = \sigma\left(\mathbf{W}_{2}\cdot\gamma\left(\mathbf{W}_{1}\left(\mathbf{h}_{i}^{U}||\mathbf{h}_{j}^{U}\right) + \mathbf{b}_{1}\right) + \mathbf{b}_{2}\right)$$

• Contrastive matching loss function

$$\mathcal{L}^{M} = \sum_{(i,j)\in\mathcal{M}^{+}} M(\mathbf{h}_{i},\mathbf{h}_{j}) + \sum_{(i',j')\in\mathcal{M}^{-}} \omega \left[\lambda - M(\mathbf{h}_{i'},\mathbf{h}_{j'})\right]_{+}$$

• Joint training of all modules

Loss of Hyperbolic GCN Loss of Heterogeneous GNN

Outline

- Motivation: Data-to-Ontology Matching
- MEDTO System Architecture Overview
- Model: Ontology Bootstrapping and Matching

Experiments & Case Study

• Summary & Future Directions

Datasets

- Two medical databases: <u>MIMIC-III</u> [3] and <u>MDX (IBM Micromedex)</u>
 - **MIMIC-III:** Anonymized health-related record of 4000+ patients and their stays in ICU, including 21 tables on patient tracking, ICU data and hospitalization procedure.
 - **MDX:** A medical database of IBM Micromedex that contains 59 tables on drugs, adverse effects, indications, findings, etc.
- Three standard medical ontologies provided in <u>OAEI Large BioMed Track</u>. Stats:
 - **FMA** [4]: Declarative knowledge of human anatomy. \rightarrow 78.9k concepts and "is-A" relations.
 - NCI [5]: Terminologies for clinical care and other basic research. → 56.9k concepts, 85.3k relations of 80 types (59.7k are "is-A").
 - SNOMED CT [6]: A collection of medical terms providing synonyms and definitions used in clinical reporting. → 76.7k concepts, 109.9k relations of 5 types (105.6k are "is-A")

[3] A. E. Johnson, T. J. Pollard, L. Shen, et al. Mimic-iii, a freely accessible critical care database. Scientific data, 3:160035, 2016.
[4] C. Rosse and J. L. V. M. Jr. A reference ontology for biomedical informatics: the foundational model of anatomy. J. Biomed. Informatics, 36(6):478–500, 2003.

[5] S. de Coronado, M. W. Haber, N. Sioutos, M. S. Tuttle, and L. W. Wright. NCI thesaurus: Using science-based terminology to integrate cancer research results. In MEDINFO, volume 107, pages 33–37, 2004.

[6] K. Donnelly. Snomed-ct: The advanced terminology and coding system for ehealth. In Stud Health Technol Inform, volume 121, pages 279–290, 2006.

Data-to-Ontology Matching

- Medical databases: MIMIC-III and MDX
- Baselines: AML[7], LogMap[8], RDGCN[9] (SOTA from OpenEA)

Dataset	MIMIC-III ¢	⇒ SNOMED	$\mathrm{MDX} \Leftrightarrow \mathrm{SNOMED}$		
Metric	Hits@10	Hits@30	Hits@10	Hits@30	
AML	0.06 (1/15)	0.13 (2/15)	0.16 (3/19)	0.26 (5/19)	
LogMap	0.20 (3/15)	0.20 (3/15)	0.21 (4/19)	0.37 (7/19)	
MTransE	0.00 (0/15)	0.00 (0/15)	0.05 (1/19)	0.05 (1/19)	
GCN-Align	0.20 (3/15)	0.33 (5/15)	0.32 (6/19)	0.42 (1/19)	
RDGCN	0.27 (4/15)	0.40 (6/15)	0.32 (6/19)	0.58 (11/19)	
Medto	0.47 (7/15)	0.60 (9/15)	0.42 (8/19)	0.79 (15/19)	

Table: Matching MIMIC-III and MDX to SNOMED CT

Significant performance improvement (**>50%** on MIMIC-III & **>25%** on MDX) compared to all baselines.

[7] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto. The agreementmakerlight ontology matching system. In OTM, pages 527–541, 2013.

[8] E. Jiménez-Ruiz and B. C. Grau. Logmap: Logic-based and scalable ontology matching. In ISWC, pages 273–288, 2011.

[9] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao. Relation-aware entity alignment for heterogeneous knowledge graphs. In IJCAI, pages 5278–5284, 2019.

Ontology-to-Ontology Matching

- Datasets: FMA, NCI and SNOMED from OAEI Challenge 2020 (all are standard medical ontologies) → *evaluate the ontology matching component of MEDTO*
- Baseline: Rule-based matchers (AML, LogMap), GNN-based KG entity alignment (OpenEA benchmark: MTransE, GCN-Align, RDGCN, etc.)

Better results over KG alignment and comparative performance over well-developed AML/LogMap

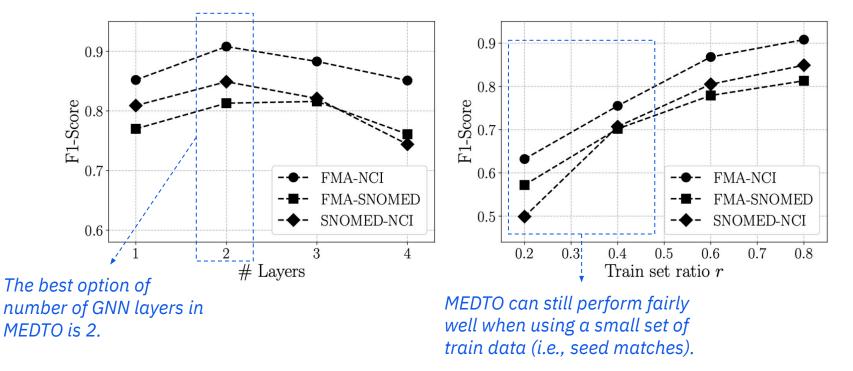
Datasets		FMA	-NCI		FMA-SNOMED				NCI-SNOMED			
Metrics	Р	R	F1	MRR	Р	R	F1	MRR	Р	R	F1	MRR
AML	0.942	0.899	0.920	-	0.902	0.729	0.806	-	0.890	0.744	0.810	-
LogMap	0.916	0.895	0.905	-	0.791	0.850	0.819	-	0.897	0.732	0.805	-
MTransE	0.627	0.640	0.633	0.416	0.505	0.475	0.490	0.372	0.254	0.378	0.304	0.349
GCN-Align	0.813	0.783	0.798	0.561	0.763	0.729	0.746	0.526	0.745	0.775	0.760	0.467
RDGCN	0.855	0.843	0.849	0.761	0.824	0.752	0.786	0.683	0.852	0.782	0.816	0.679
Medto	0.944	0.874	0.908	0.783	0.871	0.762	0.813	0.690	0.901	0.802	0.849	0.704
Medto (w/o HYP)	0.867	0.775	0.818	0.724	0.787	0.653	0.714	0.540	0.835	0.759	0.795	0.595
Medto (w/o HET)	0.927	0.851	0.887	0.763	0.863	0.747	0.801	0.676	0.881	0.807	0.842	0.688

Table: Ontology matching on OAEI dataset

Both hyperbolic graph layers and heterogeneous graph layers contributes to the performance gain.

Hyperparameter Study

• Hyperparameters: (1) number of GNN layers in MEDTO matching; (2) training ratio of seed matches.



Case Study: MIMIC-III

- MEDTO finds more matches over MIMIC-III Tables compared to AML/LogMap.
- Ambiguous terms are challenging
 - Example: "outputevents", which specifically refers *fluid output* in Ο most cases, which is captured by MEDTO. However, it mismatches with *process output* or *output measurement* in other models.
- MEDTO may sometimes fails
 - Lack of instance-level concepts during ontology bootstrapping Ο
 - Sets of introduced instance-level concepts do not correctly reflect Ο the content of table.

Substances

Cholesterol

Estradiol

Prolactin

(X)

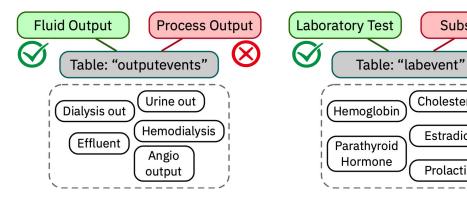


Table: Examples of MIMIC-III and MDX matching results

MIMIC-III Tables	AML	LogMap	RDGCN	Medto
patient	1	✓	✓	1
prescriptions	1	×	✓	1
caregivers	X	✓	×	1
services	X	✓	✓	1
outputevents	X	×	\checkmark	1
icustays	X	×	×	1
chartevents	X	×	×	X
labevents	X	×	×	X

MDX Tables	AML	LogMap	RDGCN	Medto
AdverseEffect	1	1	1	1
Dosage	1	1	1	1
DrugFoodInteraction	X	1	1	1
ContraIndication	X	×	1	1
DoseAdjustment	X	×	×	1
DrugRoute	X	×	×	×

Outline

- Motivation: Data-to-Ontology Matching
- MEDTO System Architecture Overview
- Model: Ontology Bootstrapping and Matching
- Experiments & Case Study

Summary & Future Directions

- Summary
 - End-to-end framework MEDTO for medical data to ontology matching
 - MEDTO creates a semantically enriched ontology from a given medical database and matches the derived ontology to standard ontologies
 - GNN-based ontology matching module capturing two facets of an ontology
 - Effectiveness shown on real-world medical databases
- Future Directions
 - Support more relations in an ontology (e.g., disjoint, equivalence statements, etc.)
 - Learn representations with ontological constraints applied to improve match predictions

Thank you!

Contact: jhao@cs.ucla.edu, chuan.lei@ibm.com

Scan the QR-code for more paper details!

