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Today’s Agenda - Background: Protein Structure Prediction
- AlphaFold v1: CNN
- AlphaFold v2: Transformer/Attention

- Discussion: Network Science and Graph in
Biology World




AlphaFold: Improved protein structure
prediction using potentials from deep
learning

AlphaFold2: Highly accurate protein
structure prediction with AlphaFold

(Optional Reading) Accurate prediction of
protein structures and interactions using a
three-track neural network



Background: What is protein folding and why is it
important?

A decade-long biology challenge for proteins, the
building blocks of life in the planet.



Biology 101: Proteins UCLA

Engineer Change.

® Proteins are large, complex molecules essential to all of life. Nearly every function that our body
performs (e.g. contracting muscles, sensing light, or turning food into energy), relies on proteins, and
how they move and change.

e \What any given protein can do (largely) depends on its unique 3D structure. Examples are:
o Notorious “spike proteins’’ which stud coronavirus that allows the virus to enter our cells.
o Antibody proteins utilized by our immune systems are Y-shaped, and form unique hooks.
o Collagen proteins are shaped like cords, which transmit tension between cartilage, ligaments,
bones, and skin.

® The recipes for those proteins, called genes, are encoded in our DNA and generated by Ribosome.
Many diseases and deaths for an organism, are fundamentally linked to malformed proteins.

® Proteins are composed of chains of amino acids (also referred to as amino acid residues). But DNA
only contains information about the sequence of amino acids, not how they fold into shape.



Biology 101: Proteins

UCLA

Engineer Change.
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Why is Protein Folding Important? UCLA

“I think that we shall be able to get a more thorough
understanding of the nature of disease in general by
investigating the molecules that make up the human
body, including the abnormal molecules, and that this
understanding will permit...the problem of disease to be
attacked in a more straightforward manner such that
new methods of therapy will be developed.”

-- Linus Pauling, 1960



Why is Protein Folding Important? UCLA

Engineer Change.

e Scientists have long been interested in determining the structures of proteins because a protein’s
form is thought to dictate its function.

e Once a protein’s shape is understood, its role within the cell can be guessed at, and scientists can
develop drugs that work with the protein’s unique shape.

e Traditional methods: Experimental techniques like cryo-electron microscopy, nuclear magnetic

resonance and X-ray crystallography

e A ot of trial and error, time consuming, high cost
e Tens or hundreds of thousands of dollars per protein
e Motivation: Biologists are turning to Al methods as an alternative to this long and laborious process
for difficult proteins.
e The ability to predict a protein’s shape computationally from its genetic code alone could no doubt
help accelerate research.


https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy
https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
https://en.wikipedia.org/wiki/X-ray_crystallography

X-ray crystallography UCLA

Engineer Change.

e Huge cost: Hundreds of thousands of dollars and about one years in duration for one protein — Only
170,000 protein folding structures have been identified




Protein Folding: Take-away UCLA

Engineer Change.

Uniqueness: The sequence usually map
1-to-1 to a 3D structure.

Function: 3D structure determines its
Problem: Huge number ways and function. Misfold — disease
possibilities to fold.

Dataset: 200M proteins with sequences
but only 170K with available 3D
structures.

Cost: X-ray crystallography costs
$120,000 and takes 1 year.




Protein Folding: Promising Applications UCLA

Engineer Change.

Near-term Long-term

DNA - Function: Learn unknown
function of genes encoded in DNA
Disease: Understand the cause of Physics-based stimulation of
disease as results of misfolded proteins. biological systems
Treatment: Design proteins to fix
other misfolded proteins. Biological and artificial life

Other applications: Agriculture, }

Supplements and biomaterials.




Four Levels of Protein Structures UCLA

Engineer Change.

< Level 1: What we mostly (and easily) know about!

< Level 3: What we mostly care about! The Folding!

Credit:
[1]https://www.khanacademy.org/science/biolog
y/macromolecules/proteins-and-amino-acids/a/or
ders-of-protein-structure
https://en.wikipedia.org/wiki/Protein _structure



https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure
https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure
https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure
https://en.wikipedia.org/wiki/Protein_structure

Four Levels of Protein Structures: Primary UCLA

Engineer Change.
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Four Levels of Protein Structures: Secondary

UCLA

Engineer Change.
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Four Levels of Protein Structures: Tertiary UCLA

Engineer Change.

Secondary  Primary

Quaternary

The overall three-dimensional structure of a polypeptide.
Typically require deep knowledge about stereochemistry and
more advanced expertise.

This is the level of prediction where AlphaFold (and AlphaFold
2) focus.

Polypeptide backbone
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Four Levels of Protein Structures: Quaternary UCLA

Engineer Change.

Secondary  Primary

Tertiary

Many proteins are made up of a single polypeptide chain
and have only three levels of structure (the ones we’ve
just discussed).

However, some proteins are made up of multiple
polypeptide chains, also known as subunits. When these
subunits come together, they give the protein its
quaternary structure.



Protein Structures: High-level summary

UCLA

Engineer Change.

Gery protein is made \

up
of a sequence of amino
acids bonded together

| >

These amino acids interact
locally to form shapes like
helices and sheets

Pleated
sheet

Alpha
helix

protein structure

Pleated
sheet

\_

Gese shapes fold up o)

larger scales to form the
full three-dimensional

Alpha
helix

/

Proteins can interact with
other proteins, performing
functions such as signalling
and transcribing DNA




Protein Backbone Geometry UCLA

Engineer Change.

A protein backbone is a repeating sequence (linear chain) of 3 atoms: nitrogen, carbon, and another
Carbon namely N(l), Cél), C(l),N(z), C(SZ), co, ..., N(L), C(SL),C(L)
’ N o _




CASP: “Kaggle” on Protein Structure Prediction UCLA

Engineer Change.

® Critical Assessment of protein Structure Prediction [Main Page]
o Known as “Protein Structure Prediction Center”

14th Community Wide Experiment on the

[ Eva | u ati O N Critical Assessment of Techniques for Protein Structure Prediction
. Meng CASP14
O G I O b a | D I sta n C e Te St ( G DT) Home CASP provides an independent mechanism for the assessment of methods of protein structure modeling. From May
PC Login through August 2020, CASP organizers have been posting on this website sequences of unknown protein structures
PC Registration for modeling. Protein models have been collected from May through mid-September, and evaluated as the

experimental coordinates become available. In the summer and fall, the tens of thousands of models submitted by

O T M _SCO re R M S D v CASP Experiments approximately 100 research groups worldwide are processed and evaluated. Independent assessors in each of the
4

prediction categories bring independent insight into their assessment. Tools for viewing, comparison, and analysis of

CASP14 (2020) submitted models are available from this website.
CASP_Commons
) N — (CoVID-19, 2020) Targets Predictors Conference Results CASP14 in
Global Distance Test news
CASP13 (2018)
CASP12 (2016) Target List Groups Info Abstracts AUTOMATIC CASP Press
CASP11 (2014) Domain Program EVALUATION Release
CASP10 (2012) Definition Presentations CAS?14 results will be Nature
T L, o T published Science
CASP9 (2010) Recordings in a special edition of ’
CASPS (2008) CASP14 Conference Proteins in 2021. New York Times
CASP7 (2006), Platforms BBC news
CASP6 (2004) Parseable Data Fortune
CASPS (2002) CNBC news
40(y CASP4 (2000) Rankings: Regular Bloomberg
- 0 CASP3 (1998) targets (T) Financial Post
fate CASP2 (1996) Rankings: Multimeric MIT Technology
: CASP1 (1994) targets (H,To) Review
. GROUND TRUTH Global Distance Test » Initiatives Rankings: Inter-domain  The Guardian
R prediction
P Data Archive i The Telegraph
TS Rankings: Refinement g &
0 Proceedings targets (R) Daily Mail
94 A) CASP Measures Rankings: Contact Tech Crunch
Feedback predictions Venture Beat
Assessors New Scientist
People SciTech Daily
Community Resources Eureka Alert
Job Fair News Medical
MedCity News
. GROUND TRUTH () PrebicTION



https://predictioncenter.org/

Dataset: What do we know about proteins? UCLA

Engineer Change.

e Sequence databases — 200M+
o UniRefA (JackHMMER)
o BFD (HHblits)
o  MGnify clusters (JackHMMER)
e Structural databases — Around 170K
o PDB (training)
o PDB70 clustering (hhsearch)

Pro.t,\ $

PROTEIN DATA BANK

& HMMER

References:

[1] Berman et al., Nature Structural Biology (2003) doi:10.1038/nsb1203-980

[2] Mitchell et al., Nucleic Acids Research (2019) doi:10.1093/nar/gkz1035

[3] Potter et al., Nucleic Acids Research (2018) doi:10.1093/nar/gky448

[4] Steinegger et al., BMC Bioinformatics (2019) doi:10.1186/s12859-019-3019-7
[5] Steinegger et al., Nature Methods (2019) doi:10.1038/s41592-019-0437-4
[6] Suzek et al., Bioinformatics (2015) doi:10.1093/bioinformatics/btu739

Visualization: PyMol https://pymol.org/2/



https://pymol.org/2/

AlphaFold v1: Improved protein structure

prediction using potentials from deep learning

One CNN-supported Protein Folding Model



AlphaFold and AlphaFold on CAPS14 Challenge UCLA

Engineer Change.
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Protein Sequence
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e Residual CNN as core model to predict distance and angle
Neural Network Databases

to create final structure output 1
e Using Multiple Sequence Alignment (MSA) from databases iz
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¥
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Score (Gradient Descent)

AlphaFold v1: Schematic Architecture

Structure



AlphaFold v1: Model Overview UC':A
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AlphaFold v1: Model Details UC':A

QTKCEKKKCVCENCERSTYL

SERKTMKFNERDSHVVCDKTC

a b o-

-20
a 10- - §-16
Sequence 20 12
Sample Initialization 9 Rl
v Ll 5
.9 30- 2 Bl
HHblits & > MSA > Deep
PSI-BLAST Features ResNet y 2 i A B
4 Gradient |o c 0
Descent |-
Sequence d T 10-
Database * =
St |_ 20-
Pool | 30-

b 40-
§ e 20-
’g < % 20 e ‘{
8 E —+- g 3 E 3 E .Y % ﬁ i 187 '%%
i g e ‘\—u = — 8 e \"-> g > 8 > \-b g. . é 4 ~"}’
s8] 1581221518 g1 i
© o | w2 s E 3 1o e
g o (a1] ™ o % 10+ *
L
4 ,,++
4 T

6 8 10 12 14 16 18 20 22
True distance (A)

H



Multiple Sequence Alignment (MSA) UCLA

Engineer Change.

e Refer to the process or the result of sequence alignment of three or more biological sequences
e In AlphaFold, MSA is used to generate feature maps.

® Important indicator for structure information
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UCLA

Engineer Change.

Protein Folding: Conventional Pipeline

Free Modeling Template-Based Modeling

‘ Template Sorting ‘

Example of Feature processing pipeline
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Another RNN Method for Protein Folding

UCLA

Engineer Change.
 End-to-End Differentiable Learning of Protein Structure, by Cell Systems
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https://www.sciencedirect.com/science/article/pii/S2405471219300766

AlphaFold v2: Highly accurate protein structure
prediction with AlphaFold

Where attention mechanism replace CNN and produce a
breakthrough on the folding prediction



AlphaFold v2: Glance View
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AlphaFold v2: Glance View (Clearer Version)
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AlphaFold2: Input

e Not significantly different from AlphaFold v1, or
even other models

e |nput sequence, and leveraging some known
knowledge

 MSA (sequence-residue from genetic
database), in the shape of (s,r,c)

* Templates (residue-residue, structure database
from known proteins), ), in the shape of (r,r,c)

RALEEE JE

Input sequence

Genetic
database
search

Structure
database
search

ga9le

MSA

Templates



AlphaFold2: Input (Complete Version)
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Evoformer: Evolutionary Transformer?

o Central idea: AlphaFold2 leverages
the current structural hypothesis
to improve the assessment of the
multiple sequence alignment,
which in turns leads to a new
structural hypothesis, back and
forth at every cycle.

o two transformers (a “two-tower
architecture”), with one clear
communication channel.
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Evoformer Block

o Information flow in one Evoformer Block. A total of 48 Evo blocks are used.

48 blocks (no shared weights)

Triangle
update
using
incoming
edges

,

Pair
representation
(rr.c)



Evoformer Stack: Algorithm Workflow

Algorithm 6 Evoformer stack

def EvoformerStack({msi}, {z'ij}’ Nblock = 48, Cs = 384) g

1: foralll € [1, Y ,Nblock] do
#  MSA stack

2:

{m;} += DropoutRowwiseq ;5(MSARowAttentionWithPairBias({m; }, {zi;}))

3:  {mg} += MSAColumnAttention({my;})

4:  {mg} += MSATransition({m;})

#  Communication

5:  {z;;} += OuterProductMean({m;})

#  Pair stack

6:  {z;;} += DropoutRowwiseg o5(TriangleMultiplicationOutgoing({z;;}))
7. {zi;} += DropoutRowwiseg o5 (TriangleMultiplicationIncoming({z;;}))
8:  {z;;} += DropoutRowwiseg o5(TriangleAttentionStartingNode({z;;}))
9:  {2zi;} += DropoutColumnwise o5 (TriangleAttentionEndingNode({z;;}))
10:  {z;;} += PairTransition({z;;})
11: end for

# Extract the single representation

12: s; = Linear(my;) s; € R®

13: return {mg}, {z;;}, {s:}




AlphaFold2’s MSA Transformer

e The attention is “factorized” in “row-wise” and “column-wise” components.

e MSA Transformer first computes attention in the horizontal direction, allowing the network to
identify which pairs of amino acids are more related; and then in the vertical direction, determining
which sequences are more informative.

e MSA Transformer’s row-wise (horizontal) attention mechanism incorporates information from the
“pair representation”.

e Gated attention applied.



AlphaFold2’s MSA Row-wise Gated Attention
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Algorithm 7 MSA row-wise gated self-attention with pair bias
def MSARowAttentionWithPairBias({m;}, {zi;},c = 32, Npeaa = 8) :

# Input projections
I: mg; « LayerNorm(myg;)

2: qP, kP, v = LinearNoBias(m,;) q, kv e RS, h e {1,..., Nhead}
3: bz’-Lj = LinearNoBias(LayerNorm(z;;))
4: gh = sigmoid (Linear(m; ) gh eRe
# Attention
5: a?ij = softmax; (ﬁ qQ‘Tkgj + bfj)
6 o =gl ® 24 agij"gj
# Output projection
m,; € R

7: Mg = Linear (concath (ng))

8: return {mg;}




Evoformer: MSA Stack to Pair Stack
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Supplementary Figure 5 | Outer product mean. Dimensions: s: sequences, r: residues, ¢: channels.

Algorithm 10 Outer product mean
def OuterProductMean({ms;},c = 32):

1: mg; < LayerNorm(my;)

2: agj, bg; = Linear(myg;) asi, bs; € R
3: 0;; = flatten (mean,(as; ® b)) 0;; € R
4: z;; = Linear(o;;) z;; € R

5: return {zij}




AlphaFold2’s Pair Transformer

- Attention is arranged in terms of triangles of residues. [ Triangular attention

Triangle multiplicative update Triangle multiplicative update
using ‘outgoing’ edges using ‘incoming’ edges
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Pair Transformer: Triangular Multiplicate Update

Triangle multiplicative update Triangle multiplicative update
using ‘outgoing’ edges using ‘incoming’ edges
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Supplementary Figure 6 | Triangular multiplicative update using “outgoing” edges. Dimensions: r: residues,
c: channels.



Pair Transformer: Triangular Self-Attention
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AlphaFold2: Structure module

e The structure module considers the protein as a “residue gas”, a floating backbone.

e Every amino acid is modelled as a triangle, representing the three atoms of the backbone.

e These triangles float around in space and are moved by the network to form the structure.

e These transformations are parametrized as “affine matrices”.

e At every step of the iterative process, AlphaFold 2 produces a set of affine matrices that displace and rotate
the residues in space. [] There are potential structural violations in stereochemistry.

Recycling iteration 2, block 37
0 0 0 l i Secondary structure assigned from the final prediction



https://docs.google.com/file/d/1A4_TRqHbq2kJNdgJaCyf59etSt25CULA/preview

AlphaFold2: Structure module

« Contains one module named Invariant point attention (IPA)
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AlphaFold2: IPA Module

backbone frames
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AlphaFold2: Quick Fact of Training Losses

e Specific structural loss which is called FAPE (Frame Aligned Point Error)

e Auxiliary loss: MSA Masking

e The model is given a multiple sequence alignment with some symbols “masked out” and asked
to predict these symbols. — Self-supervision

e Self-distillation
e In this approach, they took a model trained exclusively on the PDB (full structure details

available) and predicted the structures of ~300k diverse protein sequences obtained from
Uniclust (no structure available).

e They then retrained the full model, incorporating a small random sample of these structures (a
high-confidence subset) at every training cycle.

e They claim this allows the model to leverage the large amount of unlabeled data available in
protein sequence repositories.

e QOther tricks...



AlphaFold2: Tons of Engineering and Design

Ablation study of multiple variants

With self-distillation training -
Baseline -
No templates -

No auxiliary distogram head -

No raw MSA _
(use MSA pairwise frequencies)

No IPA (use direct projection) -
No auxiliary masked MSA head -

No recycling -

No triangles, biasing or gating _|
(use axial attention)

No end-to-end structure gradients _|
(keep auxiliary heads)

No IPA and no recycling -
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Summary

- Al can contribute to basic scientific discovery, with the

hope of making real-world impact, such as AlphaFold(2)
in the realm of protein biology.

- A tool like AlphaFold might help rare disease researchers

predict the shape of a protein of interest rapidly and
economically.

- Physical insights are built into the network structure,

instead of just data preprocessing or feature selection
and curation.

- However, AlphaFold(2), similar to many computational

biology model, are not verified nor experimented in
“wet lab” and still skeptical to many biologists and
pharmaceutical industry.



AlphaFold v2: Protein Structure Database, Source

Code and Demo

Run AlphaFold2 on Google Colab



AlphaFold2 Protein Database

Demo (ACE2-HUMAN): https://alphafold.ebi.ac.uk/entry/Q9BYF1

Protein

Gene

Source organism
UniProt

Experimental structures

Biological function

3D viewer ®

Model Confidence:

M Very high (pLDDT > 90)
Confident (90 > pLDDT > 70)
Low (70 > pLDDT > 50)
[ Very low (pLDDT < 50)
AlphaFold produces a per-residue confidence

score (pLDDT) between 0 and 100. Some

regions below 50 pLDDT may be unstructured

in isolation.

Angiotensin-converting enzyme 2

ACE2

Homo sapiens go to search &

Q9BYF1 go to UniProt &

63 structures in PDB for Q9BYF1 go to PDBe-KB &

(Microbial infection) Non-functional as a receptor for human coronavirus SARS-CoV-2. go to UniProt &

Sequence of AF-Q9BYF1-F1 ¢  1:Angiotensi...

1 1 1 3 4 1 651 1 8 9 1( 1 21
MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVONMNNAGDKWSAFLKEQSTLAQMY PLOETQNLTVKLOLOALQQONGSSVLSEDKSKRLNT ILNTMS
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TIYSTGKVCNPDNPQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKL
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https://alphafold.ebi.ac.uk/entry/Q9BYF1

Source Code and AlphaFold on Google Colab

Source Code: https://github.com/deepmind/alphafold/

Original AlphaFold Colab:

https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/
AlphaFold.ipynb

AlphaFold2 and advanced version (*not* authored by Google/DeepMind):
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold?2

.ipynb

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/Alpha
Fold2 advanced.ipynb

More Colab notebooks: https://github.com/sokrypton/ColabFold/



https://github.com/deepmind/alphafold/
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
https://github.com/sokrypton/ColabFold/

OpenFold2:

Run AlphaFold2 on Google Colab



New Paper on Science: RoseTTAFold

Accurate prediction of protein structures and interactions using a three-track neural network

e Accuracy approaching closely on DeepMind’s
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https://www.science.org/doi/full/10.1126/science.abj8754

SE(3)-Transformers [Paper]
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https://arxiv.org/pdf/2006.10503.pdf

Discussion
Network Science and Graph in Bioinformatics

At the boundary between different fields, new
“mountains” rise up.
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Reference: Yue, Xiang, et al. "Graph embedding on biomedical networks: methods, applications and
evaluations.” Bioinformatics 36.4 (2020): 1241-1251.



Example: Drug-Protein Network, Side Effects

Credit: https://zitniklab.hms.harvard.edu/research/
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Predictions about nodes, edges, subgraphs, and entire
graphs, e.g., properties of cells, patient outcomes, new
relationships like disease-gene associations, new disease
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https://zitniklab.hms.harvard.edu/research/

More Applications

e Molecular biology, compound structures, pathways
e Pandemic prediction, disease spreading
e Healthcare knowledge graphs, biomedical ontologies

e (Clinical report analysis and personal health record



DeepMind’s
AlphaFold Team &
Posts

- https://deepmind.com/blog/article/AlphaFold-Using-Al-fo

r-scientific-discovery (AlphaFold v1, Jan 2020)

- https://deepmind.com/blog/article/alphafold-a-solution-t

0-a-50-year-old-grand-challenge-in-biology (AlphaFold v2,

Dec 2020)

- https://deepmind.com/blog/article/putting-the-power-of-

alphafold-into-the-worlds-hands (AlphaFold v2 release, Jul

2021)


https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://deepmind.com/blog/article/putting-the-power-of-alphafold-into-the-worlds-hands
https://deepmind.com/blog/article/putting-the-power-of-alphafold-into-the-worlds-hands

. Tutorials, Blogs, and Related resources of AlphaFold
Resource List: and AlphaFold2 (collected by Junheng)

AlphaFold and New
Frontier of Protein

Folding



https://docs.google.com/document/d/1Rc5721y8dGu-Yw1ZGtjAVZXqMGWckYmWvazYlDI_MOY/edit?usp=sharing
https://docs.google.com/document/d/1Rc5721y8dGu-Yw1ZGtjAVZXqMGWckYmWvazYlDI_MOY/edit?usp=sharing

UCLA Samueli

Computer Science

Thank you!

Contact: jhao@cs.ucla.edu
Website: http://www.haojunheng.com/



http://www.haojunheng.com/

Appendix
Related Topics and Tutorials

More about MSA, Protein structure and spatial
representation, etc.



